首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydroponic experiment was conducted to examine the effect of Cd stress on anti-oxidative enzyme activities at heading stage, yield components, root exudation and Cd and N uptake of rice plants grew in different N source i.e. (NH4)2SO4, NH4NO3 and Ca(NO3)2. The results show that the effect of Cd stress on all measured parameters were N source dependent. Cd stress (1 μM) caused a remarkable reduction in grain yield and shoot biomass, an increase in root exudation, glutathione content, Cd concentration and catalase (CAT) and peroxidase (POD) activities of rice plants. In the plants under the control (without Cd addition) N source had no distinctive effect on the above measured parameters, but the differences among the three N forms in these parameters became significant when plants were exposed to Cd stress. Cd stress significantly increased POD and CAT activities, and gultathione content, with Ca(NO3)2-fed plants having the greatest POD and CAT activities and lowest glutathione content, and (NH4)2SO4-fed plants being just opposite. Moreover, organic acid exudation varied also with N form for the Cd-stressed plants. In comparison with other two N forms, (NH4)2SO4,-treated plants had higher grain yield, N concentration and lower Cd concentration in plants. The current results indicated that (NH4)2SO4 is a better fertilizer for use in Cd contaminated soil.  相似文献   

2.
The effect of nitrogen forms on photosynthesis and anti-oxidative systems of barley plants under chromium stress was studied in a hydroponic experiment. The treatments comprised three chromium concentrations (0, 75, and 100 μM) and three N forms (NH4)2SO4, urea, and Ca(NO3)2. In comparison with the urea or (NH4)2SO4 fed plants, the Ca(NO3)2 fed plants had higher net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, photosynthetically active radiation utilization efficiency, variable to maximum chlorophyll fluorescence ratio, and the content of chlorophylls and carotenoids. Cr toxicity caused oxidative stress in all plants but the Ca(NO3)2 fed plants had the least oxidative stress. Moreover, the Ca(NO3)2 fed plants had higher activities of anti-oxidative enzymes and content of non-enzymatic antioxidants than the urea or (NH4)2SO4 fed plants. In addition, the Ca(NO3)2 fed plants had higher N and lower Cr content in all plant tissues than the urea or (NH4)2SO4 fed plants. The current results indicate that the reasonable choice of N fertilizer is important for barley production on the Cr-contaminated soils.  相似文献   

3.
Nitrate fertilization has been shown to increase Zn hyperaccumulation by Noccaea caerulescens (Prayon) (formerly Thlaspi caerulescens). However, it is unknown whether this increased hyperaccumulation is a direct result of NO3 ? nutrition or due to changes in rhizosphere pH as a result of NO3 ? uptake. This paper investigated the mechanism of NO3 ?-enhanced Zn hyperaccumulation in N. caerulescens by assessing the response of Zn uptake to N form and solution pH. Plants were grown in nutrient solution with 300 μM Zn and supplied with either (NH4)2SO4, NH4NO3 or Ca(NO3)2. The solutions were buffered at either pH 4.5 or 6.5. The Zn concentration and content were much higher in shoots of NO3 ?-fed plants than in NH4 +-fed plants at pH 4.5 and 6.5. The Zn concentration in the shoots was mainly enhanced by NO3 ?, whereas the Zn concentration in the roots was mainly enhanced by pH 6.5. Nitrate increased Zn uptake in the roots at pH 6.5 and increased apoplastic Zn at pH 4.5. Zinc and Ca co-increased and was found co-localized in leaf cells of NO3 ?-fed plants. We conclude that NO3 ? directly enhanced Zn uptake and translocation from roots to shoots in N. caerulescens.  相似文献   

4.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

5.
Two hybrids of maize (Zea mays L.) differing in resistance to drought, were grown in chernozem soil in a greenhouse and were fertilized with two different forms of nitrogen: Ca(NO3)2 and (NH4)2SO4 in concentrations corresponding to 100 kg of N ha-1. After emergence of the 4th leaf, plants were exposed to drought. During the drought period, the parameters of plant water status (water potential, osmotic potential, turgor pressure and relative water content) and chlorophyll a+b concentration were monitored every two days. N and K concentration and accumulation over the drought period were also monitored.Next to differences in adaptability of the two hybrids to drought, the results demonstrate different adaptability of NH4 and NO3-treated plants within each hybrid. NH4-plants of each hybrid maintain higher turgor pressure during the drought by better osmotic adaptation. Especially significant differences appear between chlorophyll (a+b) values of NH4 and NO3-treated plants and as affected by drought. Chlorophyll concentrations of NH4-plants are higher than those of NO3-plants both in control and droughted plants. NH4 plants show a characteristic initial chlorophyll increase at the beginning of the drought period while in NO3 plants chlorophyll constantly decreases throughout the whole drought period. The influence of the nitrogen form on chlorophyll concentration changes during drought does not appear to be affected by regulation of the K concentration.  相似文献   

6.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

7.
The experiment was set up to examine the influence of different nitrogen forms: (NH4)2SO4, Ca(NO3)2 or NH4NO3 on growth response, root induced pH changes in the rhizosphere, root-borne acid phosphatase activity in strawberry plants cv. Senga Sengana. The plants grown on sandy mineral soil were fertilized with 3 forms of nitrogen, in concentrations of 46 mg N·kg−1 soil. The plants were grown in rhizoboxes with removable plexiglass lids. To ensure the root growth along the plexiglass lids, the rhizoboxes were placed at an angle of about 50° with the lid on the lower side. In case of ammonium supply, the nitrification inhibitor DIDIN was added (10 mg·kg−1 of moist soil) to prevent conversion of ammonium into nitrate. The growth response (roots and shoots) of strawberry plants were determined after 11 weeks of treatment with different N forms. The best development of the root system and shoots (root and shoot dry weight and root length) was obtained, when ammonium nitrate was supplied. It is suggested therefore, that NH4NO3 stimulates vegetative growth of strawberry plants cv. Senga Sengana. However, there were no statistical differences in a leaf and flower number of the plants grown under different forms of N-fertilization. Determination of rhizosphere pH, and acid phosphatase activity were executed using non-destructive techniques, which enabled weekly measurement of chemical changes in the rhizosphere. The results revealed that the form of nitrogen supplied had a predominant effect on chemical changes in the rhizosphere of strawberry plants. The highest pH values (average pH 6.8) were measured in the rhizosphere of individual plants supplied with Ca(NO3)2. Whereas the lowest pH values (average pH 5.8) were detected in the presence of (NH4)2SO4. The curve of rhizosphere pH measured along individual roots of the plants treated with Ca(NO3)2 represents the highest pH values whereas the curve of rhizosphere pH under (NH4)2SO4 treatment had the lowest pH values. The highest activity of acid phosphatase were observed in the rhizosphere of strawberry plants grown in the presence of (NH4)2SO4, at pH 5.8.  相似文献   

8.
9.

Background and aims

Nickel (Ni) has become a major heavy metal contaminant. The form of nitrogen nutrition remarkably affects IRT1 expression in roots. IRT1 has an activity of transporting Ni2+ into root cells. Therefore, nitrogen-form may affect Ni accumulation and toxicity in plants. The assumption was investigated in this study.

Methods

The Arabidopsis plants were treated in Ni-contained growth solutions with either nitrate (NO3 ?) or ammonium (NH4 +) as the sole N source. After 7-day treatments, Ni concentration, IRT1 expression, Ni-induced toxic symptoms and oxidative stress in plants were analyzed.

Results

The NO3 ?-fed plants contained a higher Ni concentration, had a greater IRT1 expression in roots, and developed more severe toxic symptoms in the youngest fully expanded leaves, compared with the NH4 +-fed plants. The Ni-induced growth inhibition was also more significant in NO3 ?-fed plants. Interestingly, Ni exposure resulted in greater hydrogen peroxide (H2O2) and superoxide radical (O2 . ?) accumulations, more severe lipid peroxidation and more cell death in NO3 ?-fed plants, whereas the opposite was true for NH4 +-fed plants. Furthermore, the Ni-enhanced peroxidase (POD) and superoxide dismutase (SOD) activities were greater in NO3 ?-fed plants

Conclusion

NO3 ? nutrition promotes Ni uptake, and enhances Ni-induced growth inhibition and oxidative stress in plants compared with NH4 + nutrition.  相似文献   

10.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   

11.
Alfalfa (Medicago sativa L.) N-sufficient plants were fed 1·5 mM N in the form of NO3, NH4+ or NO3 in conjunction with NH4+, or were N-deprived for 2 weeks. The specific activity of phosphoenolpyruvate carboxylase (PEPC) from the non-nodulated roots of N-sufficient plants was increased in comparison with that of N-deprived plants. The PEPC value was highest with NO3 nutrition, lowest with NH4+ and intermediate in plants that were fed mixed salts. The protein was more abundant in NO3-fed plants than in either NH4+- or N mixed-fed plants. Nitrogen starvation decreased the level of PEPC mRNA, and nitrate was the N form that most stimulated PEPC gene expression. The malate content was significantly lower in NO3-deprived than in NO3-sufficient plants. Root malate accumulation was high in NO3-fed plants, but decreased significantly in plants that were fed with NH4+. The effect of malate on the desalted enzyme was also investigated. Root PEPC was not very sensitive to malate and PEPC activity was inhibited only by very high concentrations of malate. Asparagine and glutamine enhanced PEPC activity markedly in NO3-fed plants, but failed to affect plants that were either treated with other N types or N starved. Glutamate and citrate inhibited PEPC activity only at optimal pH. N-nutrition also influenced root nitrate and ammonium accumulation. Nitrate accumulated in the roots of NO3- and (NO3 + NH4+)-fed plants, but was undetectable in those administered NH4+. Both the nitrate and the ammonium contents were significantly reduced in NO3- and (NO3 + NH4+)-starved plants. Root accumulation of free amino acids was strongly influenced by the type of N administered. It was highest in NH4+-fed plants and the most abundant amides were asparagine and glutamine. It was concluded that root PEPC from alfalfa plants is N regulated and that nitrate exerts a strong influence on the PEPC enzyme by enhancing both PEPC gene expression and activity.  相似文献   

12.
Summary The purpose of this study was to investigate the phytotoxicity of nitrapyrin 2-chloro-6-(trichloromethyl)pyridine to sunflower (Helianthus annuus L.) under different N regimes and to see if N forms affect the phytotoxicity of nitrapyrin. Sunflower was grown in pot culture for 21 days and was fertilized with (NH4)2SO4, NH4NO3 and NaNO3 to provide 0, 100 and 200 ppm N and with nitrapyrin application of 0 and 20 ppm. All N-treated sunflower plants in all N regimes and regardless of titrapyrin treatment produced more root and shoot dry weights and contained a significantly higher N than untreated check. Nitrapyrin toxicity appeared as a curling of leaf margin and a tendril type of stem growth, the visible toxicity symptoms decreased in the order: (NH4)2SO4>NH4NO3>NaNO3. Furthermore nitrapyrin addition suppressed sunflower growth in each N regime, the suppressing effect being greater with (NH4)2SO4 and NH4NO3 than as with NaNO3. Although, shoot growth from plants receiving nitrapyrin was not significantly affected by any N regime, root growth of nitrapyrin-treated plants was somewhat restricted by NH4 +−N nutrition relative to NO3 −N nutrition.  相似文献   

13.
Abstract Tomato plants (Lycopersicon esculentum Mill. cv. San Marzano), grown in dilute nutrient solutions containing (in meq ˙ 1-1) 0.5 NaNO3, 0.5 NH4NO3 or 0.25 (NH4)2 SO4 as the nitrogen source, were detopped for collection of xylem sap and measurement of trans-root electrical potentials. The plant parts and the xylem exudate were subsequently analysed for mineral content. The commonly observed effects of NH4+ were noted, including reduction of calcium concentration in the xylem sap, and of calcium content in stems and leaves, compared with NO3-fed plants. This effect was attributed principally to the less negative trans-root electrical potential measured in NH4+-fed plants, and the resultant reduction of inward driving force on passively moving divalent cations.  相似文献   

14.
Summary The absorption of N from foliar applications of various N sources by pine seedlings was studied under greenhouse conditions. Needles dipped into solutions of 4,000 ppm N from Ca(NO3)2 were burned slightly at the tips at two weeks. Although higher concentrations of (NH2)2CO and (NH4)2SO4 could be used without plant damage, a uniform concentration of 3,000 ppm was used in all comparative tests of sources. The level of tissue N, brought about by soil fertilization 6 weeks previously, did not significantly influence absorption of foliarly applied N15. Soil moisture maintained at near 100, 60 to 70, and 25 to 35 per cent of water-holding capacity of the Leon fs did not significantly affect the absorption of tagged N. Greater quantities of N15 were absorbed as urea than as Ca(NO3)2 or (NH4)2SO4. The use of a spreader-sticker increased the N15 uptake, regardless of the N compound used. However, the magnitude of the increased absorption associated with use as a sticker varied from 490 per cent with (NH4)2SO4 to 260 per cent with urea. It was calculated that approximately 71, 45, and 39 per cent of foliar applied N was absorbed into needles within 24 hours from urea, Ca(NO3)2, and (NH4)2SO4, respectively. Journal Paper No3588 of the Florida Agricultural Experiment Station, Gainesville, Florida.  相似文献   

15.
Zou  C.  Shen  J.  Zhang  F.  Guo  S.  Rengel  Z.  Tang  C. 《Plant and Soil》2001,235(2):143-149
Comparative studies on the effect of nitrogen (N) form on iron (Fe) uptake and distribution in maize (Zea mays L. cv Yellow 417) were carried out through three related experiments with different pretreatments. Experiment 1: plants were precultured in nutrient solution with 1.0×10–4 M FeEDTA for 6 d and then exposed to NO3–N or NH4–N solution with 1.0×10–4 M FeEDTA or without for 7 d. Experiment 2: plants were precultured with 59FeEDTA for 6 d and were then transferred to the solution with different N forms, and 0 and 1.0×10–4 M FeEDTA for 8 d. Experiment 3: half of roots were supplied with 59FeEDTA for 5 d and then cut off, with further culturing in treatment concentrations for 7 d. In comparison to the NH4-fed plants, young leaves of the NO3-fed plants showed severe chlorosis under Fe deficiency. Nitrate supply caused Fe accumulation in roots, while NH4–N supply resulted in a higher Fe concentration in young leaves and a lower Fe concentration in roots. HCl-extractable (active) Fe was a good indicator reflecting Fe nutrition status in maize plants. Compared with NO3-fed plants, a higher proportion of 59Fe was observed in young leaves of the Fe-deficient plants fed with NH4–N. Ammonium supply greatly improved 59Fe retranslocation from primary leaves and stem to young leaves. Under Fe deficiency, about 25% of Fe in primary leaves of the NH4-fed plants was mobilized and retranslocated to young leaves. Exogenous Fe supply decreased the efficiency of such 59Fe retranslocation. The results suggest that Fe can be remobilized from old to young tissues in maize plants but the remobilization depends on the form of N supply as well as supply of exogenous Fe.  相似文献   

16.
Douglas fir seedlings were grown for two to three months in sand and soil cultures in a greenhouse to examine their growth response to nitrogen (N) source at different levels of pH and iron (Fe) supply. In the first two experiments nutrient solutions of known pH were automatically applied to the top of the sand cultures and allowed to run to waste from the bottom. Under these conditions seedlings made most growth on nitrate (NO3–N) under acid (pH4) conditions, but most growth on ammonium (NH4–N) under neutral (pH7) conditions. Calcium carbonate (CaCO3) was used to create a range of pH conditions (from 4.0 to 7.2) in a peat and sand artificial soil. Over the pH range 4 to 6 NH4–N or NO3+NH4–N produced larger seedlings than NO3–N alone, but above pH6 growth on all N sources was depressed. Chemical analysis showed that seedling Ca concentration had increased and Fe concentration had decreased with increase in CaCO3 application. Both Ca and Fe concentrations were higher in seedlings receiving NO3–N than in those receiving NH4 or NO3+NH4.In sub-irrigated sand cultures, Doughlas fir seedlings receiving NO3–N were shown to respond to additions of Fe chelate, but seedlings receiving NH4–N responded little to Fe chelate. At pH5 seedlings receiving NO3–N did not grow as big as seedlings receiving NH4–N in the absence of Fe chelate, but addition of Fe chelate resulted in NO3-fed seedlings growing larger than NH4-fed seedlings. The relationship between seedling Fe concentration and N nutrition is discussed.The relatively larger root dry weight and surface area of seedlings grown on NO3–N, as compared to NH4–N, in sand culture, was noted.  相似文献   

17.
Partitioning and utilization of assimilated C and N were compared in nonnodulated, NO3-fed and nodulated, N2-fed plants of white lupin (Lupinus albus L.). The NO3 regime used (5 millimolar NO3) promoted closely similar rates of growth and N assimilation as in the symbiotic plants. Over 90% of the N absorbed by the NO3-fed plants was judged to be reduced in roots. Empirically based models of C and N flow demonstrated that patterns of incorporation of C and N into dry matter and exchange of C and N among plant parts were essentially similar in the two forms of nutrition. NO3-fed and N2-fed plants transported similar types and proportions of organic solutes in xylem and phloem. Withdrawal of NO3 supply from NO3-fed plants led to substantial changes in assimilate partitioning, particularly in increased translocation of N from shoot to root. Nodulated plants showed a lower (57%) conversion of C or net photosynthate to dry matter than did NO3-fed plants (69%), and their stems were only half as effective as those of NO3-fed plants in xylem to phloem transfer of N supplied from the root. Below-ground parts of symbiotic plants consumed a larger share (58%) of the plants' net photosynthate than did NO3-fed roots (50%), thus reflecting a higher CO2 loss per unit of N assimilated (10.2 milligrams C/milligram N) by the nodulated root than by the root of the NO3-fed plant (8.1 milligrams C/milligram N). Theoretical considerations indicated that the greater CO2 output of the nodulated root involved a slightly greater expenditure for N2 than for NO3 assimilation, a small extra cost due to growth and maintenance of nodule tissue, and a considerably greater nonassimilatory component of respiration in root tissue of the symbiotic plant than in the root of the NO3-fed plant.  相似文献   

18.
王铖  尹丽娟  朱瑞良 《广西植物》2015,35(4):520-525
桧叶白发藓(Leucobryum juniperoideum)在我国东南部常见,被认为是一种理想的、适用于庭院栽培的苔藓植物,而氮是植物必需的矿质元素,但过量摄入会对其造成伤害,近年来氮沉降水平的提高对苔藓植物的多样性造成了严重影响。该研究为揭示氮沉降加剧对桧叶白发藓的影响,以经6个月断茎培养的桧叶白发藓配子体为材料,用Ca(NO3)2、NH4HCO3和NH4NO3代表三种氮源,设置2、4、8、16gN·m-2 4个水平,以喷洒去离子水为对照,进行不同氮源的胁迫试验。结果表明:氮处理浓度的增加引起组织氮含量的显著提高,增加幅度分别为69.1%、25.7%和43.1%;同时引起植株坏死率显著上升,增加幅度分别为16.5%、12.5%和13.9%。三种氮源处理对株高和净重的影响有显著差异,低浓度的铵态氮(4gN·m-2)引起株高和净重的显著增加,而硝态氮和混合态氮处理差异不显著;加氮浓度的进一步提高,引起株高和净重的减低,硝态氮处理的减低幅度最大,铵态氮的降低幅度最小。三种氮源处理均引起叶绿素含量先上升后下降,但同一水平铵态氮处理的叶绿素含量要高于其它两种氮处理,而且引起叶绿素含量下降的处理浓度要高于其它两种氮源;三种氮源均引起SOD活性显著增加、可溶性蛋白和脯氨酸含量先升后降,但不同氮源间生理指标的变化不同步。这说明桧叶白发藓对硝态氮胁迫的响应比铵态氮敏感,硝态氮的增加对桧叶白发藓造成严重危害,而少量的铵态氮(4gN·m-2)则能促进桧叶白发藓的生长。研究结果可作为桧叶白发藓繁殖与生产的氮源。  相似文献   

19.
The influence of the source of inorganic nitrogen (KNO3, (NH4)2SO4 and NH4NO3) and its concentration (5, 10, 20 and 30 mM N) on total N incorporation, as well as on N distribution into different fractions (amminiacal, amino, amide and protein) and on free amino acid levels has been determined in grape vine explants cultured in vitro.Increasing concentrations of the nitrogen source resulted in increased total N content in tissues. This effect was small for KNO3, higher for (NH4)2SO4 and maximal for NH4NO3. In addition, nitrate promoted an increase in amino-N only, whereas ammonium increased both the ammoniacal-N and the amino-N fractions. Incorporation of N into amide-N and protein-N were not affected significantly by the N sources tested.The application of increasing quantities of N enhanced the accumulation of most free amino acids, especially arginine, alanine and proline, but to different extents, depending on both the N source and its concentration. The combination of ammonium and nitrate resulted in a higher accumulation of amino acids than that observed with either one of the two forms alone.  相似文献   

20.
Plant growth in saline soils may be increased by fertilisation, but little is known about the effect of different forms of N on wheat growth in soils with different salinity levels. The aim of this study was to investigate the response of wheat (Triticum aestivum L., cv Krichauff) to (NH4)2SO4 or KNO3 or NH4NO3 at 0 (N0), 50 (N50), 100 (N100) and 200 (N200) mg N?kg?1 soil in a saline sandy loam. Salinity was induced using Na+ and Ca2+ salts to achieve three ECe levels, 2.8, 6.6 and 11.8 dS m?1 denoted S1, S2 and S3, respectively, while maintaining a low SAR (>1). Dry weights of shoot and root were reduced by salinity in all N treatments. Addition of N significantly increased shoot and root dry weights with significant differences between N forms. Under non-saline conditions (S1), addition of NO3???N at rates higher than N50 had a negative effect, while N100 as NH4???N or NH4NO3???N increased shoot and root dry weights. At N100, shoot concentrations of N and K were higher and P, Ca, Fe, Mn, Cu and Zn were lower with NO3???N than with NH4???N nutrition. The concentration of all nutrients however fell in ranges did not appear to be directly associated with poor plant growth with NO3???N. At all N additions, calculations indicated that soil salinity was highest with N addition as NO3???N and decreased in the following order: NO3?N > NH4?N > NH4NO3?N. Addition of greater than N50 as NO3???N, compared to NH4???N or NH4???NO3, increased soil salinity and reduced micronutrient uptake both of which likely limited plant growth. It can be concluded that in saline soils addition of 100 mg N?kg?1 as NH4???N or NH4NO3???N is beneficial for wheat growth, whereas NO3???N can cause growth depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号