首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Bacterial lipopolysaccharide (LPS) induces interferon (IFN) secretion and an antiviral state in murine peritoneal macrophages (PM). These cells secrete predominantly IFN-beta, as shown by neutralization assays with monoclonal antibodies. Secretion of IFN-beta is also induced in PM by IFN-gamma. LPS and IFN-gamma synergistically stimulated PM to produce IFN in amounts almost comparable to those induced by infection with Newcastle disease virus. Low levels of IFN-beta mRNA can be detected in freshly harvested PM by hybridization assays. The accumulation of this mRNA is markedly increased in PM treated with LPS or IFN-gamma, and it is further enhanced in the presence of the inhibitor of protein synthesis, cycloheximide. Similar studies were carried out on the RAW 264.7 line of transformed macrophages. These cells are induced to secrete IFN-beta by LPS but not by IFN-gamma, suggesting that this cytokine may elicit such specific response only in PM. IFN-beta mRNA is undetectable in untreated RAW 264.7 cells, and accumulation of this mRNA is induced by LPS but not by IFN-gamma. The secretion of IFN induced by these agents in PM and by LPS in RAW 264.7 cells and the corresponding accumulation of IFN-beta mRNA are blocked by an inhibitor of protein kinase C, staurosporine. The activity of this kinase is apparently necessary to stimulate accumulation of IFN-beta mRNA. The induction of IFN-beta by IFN-gamma appears to be a characteristic response of PM and may be at least in part responsible for the resistance of these cells to viral infections.  相似文献   

5.
6.
7.
8.
9.
10.
11.
We investigated the role of the constitutive nitric oxide (NO) in the expression of interferon (IFN) genes in mouse peritoneal macrophages (PM). The treatment of PM with L-arginine-N(G)-amine (AA), a potent inhibitor of NO-producing enzymes, resulted in a marked accumulation of IFN-alpha4 mRNA and, to a minor extent, of IFN-beta mRNA. In contrast, the expression of IFN-gamma mRNA, as well as tumor necrosis factor alpha and interleukin-6 mRNA, was not affected. Furthermore, a remarkable increase in the expression of the IFN regulating factor 1 (IRF-1), but not of IRF-2, mRNA was detected in AA-treated PM. To investigate whether the AA-induced activation of the IFN system correlates with the production and antiviral activity of IFN, the extent of encephalomyocarditis virus (EMCV) replication was monitored in AA-treated PM with respect to control cultures. AA treatment strongly inhibited, in a dose-dependent manner, EMCV yields in PM. Likewise, similar results were obtained by the addition of the NO-scavenger carboxyphenyl-tetramethylimidazoline-oxyl-oxide. In addition, inhibition of NO synthesis by N(G)-mono-methyl-L-arginine in PM strongly decreased virus replication in coculture of PM and EMCV-infected L929 cells, whereas no antiviral effect was observed in L929 cells alone. Moreover, the AA-mediated antiviral activity was abrogated in the presence of antibody to IFN-alpha/beta, whereas antibody to IFN-gamma was completely ineffective. Taken together, these results indicate that low levels of NO, constitutively released by resting PM, negatively regulate the expression and activity of IFN-alpha/beta in PM. We suggest that NO acts as a homeostatic agent in the regulation of IFN pathway expression in macrophages.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号