首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging. We report here that a tobacco pollen-predominant Rab2, NtRab2, functions in the secretory pathway between the endoplasmic reticulum and the Golgi in elongating pollen tubes. Green fluorescent protein-NtRab2 fusion protein localized to the Golgi bodies in elongating pollen tubes. Dominant-negative mutations in NtRab2 proteins inhibited their Golgi localization, blocked the delivery of Golgi-resident as well as plasmalemma and secreted proteins to their normal locations, and inhibited pollen tube growth. On the other hand, when green fluorescent protein-NtRab2 was over-expressed in transiently transformed leaf protoplasts and epidermal cells, in which NtRab2 mRNA have not been observed to accumulate to detectable levels, these proteins did not target efficiently to Golgi bodies. Together, these observations indicate that NtRab2 is important for trafficking between the endoplasmic reticulum and the Golgi bodies in pollen tubes and may be specialized to optimally support the high secretory demands in these tip growth cells.  相似文献   

2.
The synthesis and modification of the cell wall must involve the production of new cell wall polymers and enzymes. Their targeted secretion to the apoplast is one of many potential control points. Since Rab GTPases have been strongly implicated in the regulation of vesicle trafficking, a review of their involvement in cell wall metabolism should throw light on this possibility. Cell wall polymer biosynthesis occurs mainly in the Golgi apparatus, except for cellulose and callose, which are made at the plasma membrane by an enzyme complex that cycles through the endomembrane system and which may be regulated by this cycling. Several systems, including the growth of root hairs and pollen tubes, cell wall softening in fruit, and the development of root nodules, are now being dissected. In these systems, secretion of wall polymers and modifying enzymes has been documented, and Rab GTPases are highly expressed. Reverse genetic experiments have been used to interfere with these GTPases and this is revealing their importance in regulation of trafficking to the wall. The role of the RabA (or Rab11) GTPases is particularly exciting in this respect.  相似文献   

3.
Tip growth in pollen tubes occurs by continuous vesicle secretion and delivery of new wall material, but the exact sub-cellular location of endocytic and exocytic domains remains unclear. Here we studied the localization of the Arabidopsis thaliana pollen specific syntaxin SYP125 using GFP-fusion constructs expressed in Nicotiana tobaccum pollen tubes. In agreement with the predicted role for syntaxins, SYP125 was found to be associated with the plasma membrane and apical vesicles in growing cells. At the plasma membrane, SYP125 was asymmetrically localized with a higher labeling 20–35 µm behind the apex, a distribution which is distinct from SYP124, another pollen-specific syntaxin. Competition with a related dominant negative mutant affected the specific distribution of SYP125 but not tip growth. Co-expression of the phosphatidylinositol-4-monophosphate-5-kinase 4 (PIP5K4) or of the small GTPase Rab11 perturbed polarity and the normal distribution of GFP-SYP but did not inhibit the accumulation in vesicles or at the plasma membrane.Taken together, our results corroborates previous observations that in normal growing pollen tubes, the asymmetric distribution of syntaxins helps to define exocytic sub-domains but requires the involvement of additional signaling and functional mechanisms, namely phosphoinositides and small GTPases. The localization of syntaxins at different membrane domains likely depends on the interaction with specific partners not yet identified.Key words: [Ca2+]c, endocytosis, exocytosis, secretion, syntaxins, tip growth  相似文献   

4.
Root hairs and pollen tubes show strictly polar cell expansion called tip growth. Recent studies of tip growth in root hairs and pollen tubes have revealed that small GTPases of the Rab, Arf and Rho/Rac families, along with their regulatory proteins, are essential for spatio-temporal regulation of vesicular trafficking, cytoskeleton organization and signalling. ROP/RAC GTPases are involved in a multiplicity of functions including the regulation of cytoskeleton organization, calcium signalling and endocytosis in pollen tubes and root hairs. One of the most exciting recent discoveries is the preferential localization of vesicles of the trans-Golgi network (TGN), defined by specific RAB GTPases, in the apical "clear zone" and the definition of TGN as a bona fide organelle involved in both polarized secretion and endocytosis. The TGN is thought to serve the function of an early endosome in plants because it is involved in early endocytosis and rapid vesicular recycling of the plasma membrane in root epidermal cells.  相似文献   

5.
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo .  相似文献   

6.
Rac/Rop-type Rho-family small GTPases accumulate at the plasma membrane in the tip of pollen tubes and control the polar growth of these cells. Nt-RhoGDI2, a homolog of guanine nucleotide dissociation inhibitors (GDIs) regulating Rho signaling in animals and yeast, is co-expressed with the Rac/Rop GTPase Nt-Rac5 specifically in tobacco (Nicotiana tabacum) pollen tubes. The two proteins interact with each other in yeast two-hybrid assays, preferentially when Nt-Rac5 is prenylated. Transient over-expression of Nt-Rac5 and Nt-RhoGDI2 depolarized or inhibited tobacco pollen tube growth, respectively. Interestingly, pollen tubes over-expressing both proteins grew normally, demonstrating that the two proteins functionally interact in vivo. Nt-RhoGDI2 was localized to the pollen tube cytoplasm and effectively transferred co-over-expressed YFP-Nt-Rac5 fusion proteins from the plasma membrane to this compartment. A single amino acid exchange (R69A), which abolished binding to Nt-RhoGDI2, caused Nt-Rac5 to be mis-localized to the flanks of pollen tubes and strongly compromised its ability to depolarize pollen tube growth upon over-expression. Based on these observations, we propose that Nt-RhoGDI2-mediated recycling of Nt-Rac5 from the flanks of the tip to the apex has an essential function in the maintenance of polarized Rac/Rop signaling and cell expansion in pollen tubes. Similar mechanisms may generally play a role in the polarized accumulation of Rho GTPases in specific membrane domains, an important process whose regulation has not been well characterized in any cell type to date.  相似文献   

7.
Lin Y  Wang Y  Zhu JK  Yang Z 《The Plant cell》1996,8(2):293-303
The Rho family GTPases function as key molecular switches, controlling a variety of actin-dependent cellular processes, such as the establishment of cell polarity, cell morphogenesis, and movement in diverse eukaryotic organisms. A novel subfamily of Rho GTPases, Rop, has been identified in plants. Protein gel blot and RNA gel blot hybridization analyses indicated that one of these plant Rho GTPases, Rop1, is expressed predominantly in the male gametophyte (pollen and pollen tubes). Cell fractionation analysis of pollen tubes showed that Rop is partitioned into soluble and particulate fractions. The particulate Rop could be solubilized with detergents but not with salts, indicating that it is tightly bound to membranes. The membrane association appears to result from membrane anchoring via a geranylgeranyl group because an in vitro isoprenylation assay demonstrated that Rop1Ps is geranylgeranylated. Subcellular localization, using indirect immunofluorescence and confocal microscopy, showed that Rop is highly concentrated in the cortical region of the tube apex and in the periphery of the generative cell. The cortical Rop protein at the apex forms a gradient with decreasing concentration from tip to base and appears to be associated with the plasma membrane. These results suggest that the apical Rop GTPase may be involved in the signaling mechanism that controls the actin-dependent tip growth of pollen tubes. Localization of the Rop GTPase to the periphery of the generative cell is analogous to that of myosin, suggesting that the Rop GTPase plays an important role in the modulation of an actomyosin motor system involved in the movement of the generative cell.  相似文献   

8.
In dicots, pectins are the major structural determinant of the cell wall at the pollen tube tip. Recently, immunological studies revealed that esterified pectins are prevalent at the apex of growing pollen tubes, where the cell wall needs to be expandable. In contrast, lateral regions of the cell wall contain mostly de-esterified pectins, which can be cross-linked to rigid gels by Ca(2+) ions. In pollen tubes, several pectin methylesterases (PMEs), enzymes that de-esterify pectins, are co-expressed with different PME inhibitors (PMEIs). This raises the possibility that interactions between PMEs and PMEIs play a key role in the regulation of cell-wall stability at the pollen tube tip. Our data establish that the PME isoform AtPPME1 (At1g69940) and the PMEI isoform AtPMEI2 (At3g17220), which are both specifically expressed in Arabidopsis pollen, physically interact, and that AtPMEI2 inactivates AtPPME1 in vitro. Furthermore, transient expression in tobacco pollen tubes revealed a growth-promoting activity of AtPMEI2, and a growth-inhibiting effect of AtPPME1. Interestingly, AtPPME1:YFP accumulated to similar levels throughout the cell wall of tobacco pollen tubes, including the tip region, whereas AtPMEI2:YFP was exclusively detected at the apex. In contrast to AtPPME1, AtPMEI2 localized to Brefeldin A-induced compartments, and was found in FYVE-induced endosomal aggregates. Our data strongly suggest that the polarized accumulation of PMEI isoforms at the pollen tube apex, which depends at least in part on local PMEI endocytosis at the flanks of the tip, regulates cell-wall stability by locally inhibiting PME activity.  相似文献   

9.
Regulation of pollen tube growth by Rac-like GTPases   总被引:13,自引:0,他引:13  
Plant Rac-like GTPases have been classified phylogenetically into two major groups-class I and class II. Several pollen-expressed class I Rac-like GTPases have been shown to be important regulators of polar pollen tube growth. The functional participation by some of the class I and all of the class II Arabidopsis Rac-like GTPases in pollen tube growth remains to be explored. It is shown that at least four members of the Arabidopsis Rac GTPase family are expressed in pollen, including a class II Rac, AtRac7. However, when over-expressed as fusion proteins with GFP, both pollen- and non-pollen-expressed AtRacs interfered with the normal pollen tube tip growth process. These observations suggest that these AtRacs share similar biochemical activities and may integrate into the pollen cellular machinery that regulates the polar tube growth process. Therefore, the functional contribution by individual Rac GTPase to the pollen tube growth process probably depends to a considerable extent on their expression characteristics in pollen. Among the Arabidopsis Racs, GFP-AtRac7 showed association with the cell membrane and Golgi bodies, a pattern distinct from all previously reported localization for other plant Racs. Over-expressing GFP-AtRac7 also induced the broadest spectrum of pollen tube growth defects, including pollen tubes that are bifurcated, with diverted growth trajectory or a ballooned tip. Transgenic plants with multiple copies of the chimeric Lat52-GFP-AtRac7 showed severely reduced seed set, probably many of these defective pollen tubes were arrested, or reduced in their growth rates that they did not arrive at the ovules while they were still receptive for fertilization. These observations substantiate the importance of Rac-like GTPases to sexual reproduction.  相似文献   

10.
Regulated demethylesterification of homogalacturonan, a major component of plant cell walls, by the activity of pectin methylesterases (PMEs), plays a critical role for cell wall stability and integrity. Especially fast growing plant cells such as pollen tubes secrete large amounts of PMEs toward their apoplasmic space. PME activity itself is tightly regulated by its inhibitor named as PME inhibitor and is thought to be required especially at the very pollen tube tip. We report here the identification and functional characterization of PMEI1 from maize (ZmPMEI1). We could show that the protein acts as an inhibitor of PME but not of invertases and found that its gene is strongly expressed in both gametophytes (pollen grain and embryo sac). Promoter reporter studies showed gene activity also during pollen tube growth toward and inside the transmitting tract. All embryo sac cells except the central cell displayed strong expression. Weaker signals were visible at sporophytic cells of the micropylar region. ZmPMEI1–EGFP fusion protein is transported within granules inside the tube and accumulates at the pollen tube tip as well as at sites where pollen tubes bend and/or change growth directions. The female gametophyte putatively influences pollen tube growth behavior by exposing it to ZmPMEI1. We therefore simulated this effect by applying recombinant protein at different concentrations on growing pollen tubes. ZmPMEI1 did not arrest growth, but destabilized the cell wall inducing burst. Compared with female gametophyte secreted defensin-like ZmES4, which induces burst at the very pollen tube tip, ZmPMEI1-induced burst occurs at the subapical region. These findings indicate that ZmPMEI1 secreted by the embryo sac likely destabilizes the pollen tube wall during perception and together with other proteins such as ZmES4 leads to burst and thus sperm release.  相似文献   

11.
Membrane trafficking and polar growth in root hairs and pollen tubes   总被引:9,自引:0,他引:9  
Root hairs and pollen tubes extend by rapid elongation that occurs exclusively at the tip. Fundamental for such local, tip-focused growth (so-called 'tip growth') is the polarization of the cytoplasm that directs secretory events to the tip, and the presence of internal gradients and transmembrane flux of ions, notably Ca2+, H+, K+, and Cl-. Electrophysiological and imaging studies using fluorescent markers have sought to link ion gradients with growth and membrane trafficking. Current models recognize membrane trafficking as fundamental to tip growth, notably its role in supplying lipid and protein to the new plasma membrane and cell wall that extend the apex of the cell, and a complementary role for endocytosis in retrieving excess membrane and in recycling various protein fractions. The current state of knowledge is reviewed here in order to highlight the major gaps in the present understanding of trafficking as it contributes to polar growth in these cells and recent results, that suggest a role for membrane trafficking in the active regulation of ion channel turnover and activity during polar tip growth, are discussed.  相似文献   

12.
Pollen tube elongation is a polarized cell growth process that transports the male gametes from the stigma to the ovary for fertilization inside the ovules. Actomyosin-driven intracellular trafficking and active actin remodeling in the apical and subapical regions of pollen tubes are both important aspects of this rapid tip growth process. Actin-depolymerizing factor (ADF) and cofilin are actin binding proteins that enhance the depolymerization of microfilaments at their minus, or slow-growing, ends. A pollen-specific ADF from tobacco, NtADF1, was used to dissect the role of ADF in pollen tube growth. Overexpression of NtADF1 resulted in the reduction of fine, axially oriented actin cables in transformed pollen tubes and in the inhibition of pollen tube growth in a dose-dependent manner. Thus, the proper regulation of actin turnover by NtADF1 is critical for pollen tube growth. When expressed at a moderate level in pollen tubes elongating in in vitro cultures, green fluorescent protein (GFP)-tagged NtADF1 (GFP-NtADF1) associated predominantly with a subapical actin mesh composed of short actin filaments and with long actin cables in the shank. Similar labeling patterns were observed for GFP-NtADF1-expressing pollen tubes elongating within the pistil. A Ser-6-to-Asp conversion abolished the interaction between NtADF1 and F-actin in elongating pollen tubes and reduced its inhibitory effect on pollen tube growth significantly, suggesting that phosphorylation at Ser-6 may be a prominent regulatory mechanism for this pollen ADF. As with some ADF/cofilin, the in vitro actin-depolymerizing activity of recombinant NtADF1 was enhanced by slightly alkaline conditions. Because a pH gradient is known to exist in the apical region of elongating pollen tubes, it seems plausible that the in vivo actin-depolymerizing activity of NtADF1, and thus its contribution to actin dynamics, may be regulated spatially by differential H(+) concentrations in the apical region of elongating pollen tubes.  相似文献   

13.
Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy. Expression of a dominant negative (DN) form of Rab11a or Rab11b significantly reduced the basal and cAMP-stimulated ENaC-dependent sodium (Na(+)) transport. The greatest reduction in Na(+) transport was observed with the expression of DN-Rab11b. Furthermore, small interfering RNA-mediated knockdown of each Rab11 isoform demonstrated the requirement for Rab11b in ENaC surface expression. These data indicate that Rab11b, and to a lesser extent Rab11a, is involved in establishing the constitutive and cAMP-stimulated Na(+) transport in mpkCCD cells.  相似文献   

14.
Polarized and directional growth of pollen tubes is the only means by which immotile sperm of flowering plants reach the deeply embedded female gametes for fertilization. Vesicle trafficking is among the most critical cellular activities for pollen tube growth. Vesicle trafficking maintains membrane homeostasis during rapid tube growth and provides polarity information by regulating protein/lipid compositions of different membrane compartments. In this review, we will focus on two classes of factors that orchestrate vesicle trafficking, small GTPases and phospholipids. We discuss the features of small GTPases and phospholipids that make them ideal components to regulate vesicle trafficking, review recent advances in understanding their involvement in vesicle trafficking, and propose directions for future research.  相似文献   

15.
Song XF  Yang CY  Liu J  Yang WC 《Plant physiology》2006,141(3):966-976
The polar growth of plant cells depends on the secretion of a large amount of membrane and cell wall materials at the growing tip to sustain rapid growth. Small GTP-binding proteins, such as Rho-related GTPases from plants and ADP-ribosylation factors (ARFs), have been shown to play important roles in polar growth via regulating intracellular membrane trafficking. To investigate the role of membrane trafficking in plant development, a Dissociation insertion line that disrupted a putative ARF GTPase-activating protein (ARFGAP) gene, AT2G35210, was identified in Arabidopsis (Arabidopsis thaliana). Phenotypic analysis showed that the mutant seedlings developed isotropically expanded, short, and branched root hairs. Pollen germination in vitro indicated that the pollen tube growth rate was slightly affected in the mutant. AT2G35210 is specifically expressed in roots, pollen grains, and pollen tubes; therefore, it is designated as ROOT AND POLLEN ARFGAP (RPA). RPA encodes a protein with an N-terminal ARFGAP domain. Subcellular localization experiments showed that RPA is localized at the Golgi complexes via its 79 C-terminal amino acids. We further showed that RPA possesses ARF GTPase-activating activity and specifically activates Arabidopsis ARF1 and ARF1-like protein U5 in vitro. Furthermore, RPA complemented Saccharomyces cerevisiae glo3Delta gcs1Delta double mutant, which suggested that RPA functions as an ARFGAP during vesicle transport between the Golgi and the endoplasmic reticulum. Together, we demonstrated that RPA plays a role in root hair and pollen tube growth, most likely through the regulation of Arabidopsis ARF1 and ARF1-like protein U5 activity.  相似文献   

16.
In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.  相似文献   

17.
18.
Pollen tubes are one of the fastest growing eukaryotic cells.Rapid anisotropic growth is supported by highly active exocytosisand endocytosis at the plasma membrane, but the subcellularlocalization of these sites is unknown. To understand molecularprocesses involved in pollen tube growth, it is crucial to identifythe sites of vesicle localization and trafficking. This reportpresents novel strategies to identify exocytic and endocyticvesicles and to visualize vesicle trafficking dynamics, usingpulse-chase labelling with styryl FM dyes and refraction-freehigh-resolution time-lapse differential interference contrastmicroscopy. These experiments reveal that the apex is the siteof endocytosis and membrane retrieval, while exocytosis occursin the zone adjacent to the apical dome. Larger vesicles areinternalized along the distal pollen tube. Discretely sizedvesicles that differentially incorporate FM dyes accumulatein the apical, subapical, and distal regions. Previous workestablished that pollen tube growth is strongly correlated withhydrodynamic flux and cell volume status. In this report, itis shown that hydrodynamic flux can selectively increase exocytosisor endocytosis. Hypotonic treatment and cell swelling stimulatedexocytosis and attenuated endocytosis, while hypertonic treatmentand cell shrinking stimulated endocytosis and inhibited exocytosis.Manipulation of pollen tube apical volume and membrane remodellingenabled fine-mapping of plasma membrane dynamics and definedthe boundary of the growth zone, which results from the orchestratedaction of endocytosis at the apex and along the distal tubeand exocytosis in the subapical region. This report providescrucial spatial and temporal details of vesicle traffickingand anisotropic growth. Key words: Endocytosis; exocytosis, hydrodynamics, lipophilic FM dyes, pollen tube growth, vesicle trafficking Received 14 September 2007; Revised 23 November 2007 Accepted 7 January 2008  相似文献   

19.
A model for the mechanism of tip extension in pollen tubes   总被引:1,自引:0,他引:1  
Three main mechanisms are proposed to account for the tip growth of pollen tubes. (1) The tip region is supported against the internal osmotic pressure of the cell by a fibrillar network, composed mainly of microfilaments, that is stabilized by calcium ions. Tip extension is promoted by a lowering of the local cytoplasmic calcium ion concentration, through uptake by the mitochondria and/or endoplasmic reticulum, which leads to a weakening of the fibrillar network. (2) Vesicles, derived from dictyosomes in the main body of the tube, fuse with the apical plasma membrane, providing new membrane and further carbohydrate for the wall. The rate of fusion is proportional to the rate of diffusion of calcium ion across the plasma membrane at the tip. (3) The callose lining present in the pollen tube wall, except at the tip, renders the wall impermeable and restricts entry of calcium ions to the apical plasma membrane. This restriction limits the rate of vesicle fusion, and tube growth, to the tip.This model is discussed in the light of previous observations on the growth and structure of pollen tubes under normal and experimental conditions.  相似文献   

20.
Pollen tube growth relies on an extremely fast delivery of new membrane and wall material to the apical region where growth takes place. Despite the obvious meaning of this fact, the mechanisms that control this process remain very much unknown. It has previously been shown that apical growth is regulated by cytosolic free calcium ([Ca(2+)](c)) so it was decided to test how changes in [Ca(2+)](c) affect endo/exocytosis in pollen tube growth and reorientation. The endo/exocytosis was assayed in living cells using confocal imaging of FM 1-43. It was found that growing pollen tubes exhibited a higher endo/exocytosis activity in the apical region whereas in non-growing cells FM 1-43 is uniformly distributed. During pollen tube reorientation, a spatial redistribution of exocytotic activity was observed with the highest fluorescence in the side to which the cell will bend. Localized increases in [Ca(2+)](c) induced by photolysis of caged Ca(2+) increased exocytosis. In order to find if [Ca(2+)](c) changes were modulating endo/exocytosis directly or through a signalling cascade, tests were conducted to find how changes in GTP levels and GTPase activity (primary regulators of the secretory pathway) affect the apical [Ca(2+)](c) gradient and endo/exocytosis. It was found that increases in GTP levels could promote exocytosis (and growth). Interestingly, the increase in [GTP] did not significantly affect [Ca(2+)](c) distribution, thus suggesting that the apical endo/exocytosis is regulated in a concerted but differentiated manner by the Ca(2+) gradient and the activity of GTPases. Rop GTPases are likely candidates to mediate the Ca(2+)/GTP cross-talk as shown by knock-down experiments in growing pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号