首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
ts5, a temperature-sensitive mutant of influenza B virus, belongs to one of seven recombination groups. When the mutant infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating and enzymatic activities were undetectable. However, viral protein synthesis and transport of hemagglutinin (HA) and neuraminidase (NA) to the cell surface were not affected. The NA was found as a monomer within cells even at 32 degrees C, in contrast to wild-type virus NA, existing mostly as an oligomer, but the mutant had oligomeric NA, like the wild-type virus. Its enzymatic activity was more thermolabile than that of wild-type virus. Despite the low yield, large aggregates of progeny virus particles were found to accumulate on the cell surface at the nonpermissive temperature, and these aggregates were broken by treatment with bacterial neuraminidase, with the concomitant appearance of hemagglutinating activity, suggesting that NA prevents the aggregation of progeny virus by removal of neuraminic acid from HA and cell receptor, allowing its release from the cells. Further treatment with trypsin resulted in the recovery of infectivity. When bacterial NA was added to the culture early in infection, many hemagglutinable infectious virus was produced. We also suggest that the removal of neuraminic acid from HA by NA is essential for the subsequent cleavage of HA by cellular protease. Nucleotide sequence analysis of RNA segment 6 revealed that ts5 encoded five amino acid changes in the NA molecule but not in NB.  相似文献   

2.
Role of neuraminidase in the morphogenesis of influenza B virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
When ts7, a temperature-sensitive (ts) mutant of influenza B/Kanagawa/73 virus, infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating activity and enzymatic activity of neuraminidase (NA) were negligible. However, viral protein synthesis and transport of hemadsorption-active hemagglutinin to the cell surface were not affected. When the cell lysate was treated with bacterial NA, hemagglutinating activity was recovered but infectivity was not, even after further treatment with trypsin. It was found that ts7 was defective in transport of NA to the cell surface and formation of virus particles. Analysis of the genomes of non-ts recombinants obtained by crossing ts7 and UV-inactivated B/Lee showed that ts7 had the ts mutation only in RNA segment 6 coding for NA and the glycoprotein NB. Nucleotide sequence analysis of the RNA segment revealed that ts7 had four amino acid changes in the NA molecule but not in NB. We suggest that assembly or budding of influenza B virus requires the presence of NA at the plasma membrane, unlike influenza A virus.  相似文献   

3.
We isolated 25 temperature-sensitive mutants of B/Kanagawa/73 strain generated by mutagenesis with 5-fluorouracil and classified them into seven recombination groups by pair-wise crosses. All mutants showed a ratio of plaquing efficiency at the nonpermissive temperature (37.5 C) to the permissive temperature (32 C) of 10–4 or less. At 37.5 C most of group I, II, and III mutants did not produce appreciable amounts of protein, but all other group mutants were protein synthesis-positive. A group VII mutant produced active hemagglutinin (HA) and neuraminidase (NA) at the nonpermissive temperature, but Group V mutants produced only active NA and were defective in the HA molecule. The other group mutants, including group IV mutants with mutation only in the NA gene (8, 10), lacked both activities at the nonpermissive temperature. One of nine influenza B virus isolates in 1989 had EOP 37.5/32 of 1/3 × 10–2 and belonged to recombination group VII.  相似文献   

4.
5.
A temperature-sensitive (ts) mutant of the influenza virus A/WSN/ 33 strain, ts-134, possessed a defect in intracellular transport at the nonpermissive temperature and marked thermolability of hemagglutinin (HA) activity at 51 C. These were caused by a change at amino acid residue 157 from tyrosine to histidine in the HA protein. We isolated 37 spontaneous revertant clones from ts-134 at the nonpermissive temperature and determined their HA sequences. The deduced amino acid sequences demonstrated that one was a true revertant and the others were revertants with suppressor mutations, each of which had an additional amino acid change besides those of ts-134. The changed amino acids were located at 14 positions on the HA molecule, and eight of them were found in multiple revertants. These were located in five to six distinct regions on the three-dimensional structure of the HA molecule. However, the heat stability of HAs in the revertants was recovered differently depending on the sites of the changed amino acids. The kinetics of transport of the HA protein in the revertants were slightly delayed compared to the wild-type both at permissive and nonpermissive temperatures.  相似文献   

6.
Five temperature-sensitive mutants of influenza virus A/FPV/Rostock/34 (H7N1), ts206, ts293, ts478, ts482, and ts651, displaying correct hemagglutinin (HA) insertion into the apical plasma membrane of MDCK cells at the permissive temperature but defective transport to the cell surface at the restrictive temperature, have been investigated. Nucleotide sequence analysis of the HA gene of the mutants and their revertants demonstrated that with each mutant a single amino acid change is responsible for the transport block. The amino acid substitutions were compared with those of mutants ts1 and ts227, which have been analyzed previously (W. Schuy, C. Will, K. Kuroda, C. Scholtissek, W. Garten, and H.-D. Klenk, EMBO J. 5:2831-2836, 1986). With the exception of ts206, the changed amino acids of all mutants and revertants accumulate in three distinct areas of the three-dimensional HA model: (i) at the tip of the 80-A (8-nm)-long alpha helix, (ii) at the connection between the globular region and stem, and (iii) in the basal domain of the stem. The concept that these areas are critical for HA assembly and hence for transport is supported by the finding that the mutants that are unable to leave the endoplasmic reticulum at the nonpermissive temperature do not correctly trimerize. Upon analysis by density gradient centrifugation, cross-linking, and digestion with trypsin and endoglucosaminidase H, two groups can be discriminated among these mutants: with ts1, ts227, and ts478, the HA forms large irreversible aggregates, whereas with ts206 and ts293, it is retained in the monomeric form in the endoplasmic reticulum. With a third group, comprising mutants ts482 and ts651 that enter the Golgi apparatus, trimerization was not impaired.  相似文献   

7.
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.  相似文献   

8.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

9.
Influenza virus hemagglutinin (HA) mediates viral entry into cells by a low pH-induced membrane fusion event in endosomes. A number of structural changes occur throughout the length of HA at the pH of fusion. To probe their significance and their necessity for fusion activity, we have prepared a site-directed mutant HA containing novel intersubunit disulfide bonds designed to cross-link covalently the membrane-distal domains of the trimer. These mutations inhibited the low pH-induced conformational changes and prevented HA-mediated membrane fusion; conditions that reduced the novel disulfide bonds restored membrane fusion activity. We conclude that structural rearrangements in the membrane distal region of the HA are required for membrane fusion activity.  相似文献   

10.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

11.
The cellular mutant B812 isolated from a Fisher rat cell line shows temperature sensitivity of focus formation induced by various retroviruses such as recombinant murine retrovirus containing the middle T gene of polyomavirus (PyMLV), Kirsten murine sarcoma virus, Moloney murine sarcoma virus, and recombinant murine retrovirus containing the src gene of Rous sarcoma virus. B812 cells, however, show normal ability to proliferate and synthesize protein at the nonpermissive temperature, suggesting that their mutation is in a gene specifically concerned with the process of transformation by retroviruses. In this work, experiments with hybrids of mutant and wild-type cells showed that the temperature-dependent defect of this mutant was complemented by wild-type cells. To determine the step of transformation that is restricted at the nonpermissive temperature in B812, we examined the expressions of the oncogene (middle T antigen) in no. 7 (wild-type cells) and B812 cultures infected with PyMLV (the chimeric retrovirus containing the middle T gene of polyomavirus) at the permissive and nonpermissive temperatures. Middle T-associated protein kinase activity, the expression of middle T antigen, and PyMLV-specific mRNA were reduced at the nonpermissive temperature in B812 cultures infected with PyMLV. However, integration of PyMLV into the chromosomal DNA of the mutant was not affected at the nonpermissive temperature. These results suggest that B812 cells have a mutation affecting the expression of viral mRNAs from integrated proviral DNA at the nonpermissive temperature.  相似文献   

12.
The vaccinia virus B1 gene encodes a 34-kDa protein with homology to protein kinases. In L cells infected nonpermissively with mutants containing lesions in the B1 gene (ts2 and ts25), the infectious cycle arrests prior to DNA replication. In this report, we demonstrate that DNA synthesis ceases when cultures infected with these mutants at 32 degrees C are shifted to the nonpermissive temperature (39.5 degrees C) in the midst of DNA replication. We also show that B1 protein is synthesized transiently during the early phase of infection, even when the progression to later stages of gene expression is prevented. Although wild-type (wt) B1 is stable, the ts B1 proteins are markedly labile in both L and BSC40 cells at both permissive and nonpermissive temperatures. These results suggest that the ts phenotype of the mutants is complex and may in part reflect a temperature-dependent requirement for kinase activity, an induction of temperature sensitivity in B1 substrates under nonpermissive conditions, and/or ts complementation by host factors. To facilitate biochemical analyses, recombinant wt B1, ts2 B1, and ts25 B1 were produced in Escherichia coli. The wt protein was able to phosphorylate serine and threonine residues on several exogenous substrates in vitro. The activity of ts25 B1 was 3% that of the wt enzyme, and no detectable kinase activity was associated with ts2 B1. In light of the inactivity of the ts2 B1 protein in vitro and its extreme lability in vivo, we attempted to isolate a vaccinia virus B1 null mutant by targeted interruption of the B1 gene at 32 degrees C. No null mutants were isolated. These results indicate that the B1 protein kinase provides a vital function which cannot be supplied by the host or circumvented by incubation at 32 degrees C.  相似文献   

13.

Background

The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity.

Methodology/Principal Findings

The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogeneous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA.

Conclusion/Significance

The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion.  相似文献   

14.
15.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

16.
Cytotoxic thymus-derived lymphocytes from mice infected with vesicular stomatitis virus (VSV) are H-2 restricted and virus specific for the Indiana and New Jersey strains of VSV. VSV-Indiana-immune T cells can lyse target cells infected with the temperature sensitive (ts) mutant ts 045 about 30 times better when target cell infection occurs at the permissive rather than the non-permissive temperature. Since this mutant fails to express the glycoprotein at the cell surface when grown at the nonpermissive temperature, our results support the view that the viral glycoprotein is involved in defining the major target antigen for VSV-specific T cells. However, the tl 17 mutant that expresses a mutant glycoprotein at the cell surface was lysed, suggesting that the expressed mutated glycoprotein can cross-react with Indiana wild-type glycoprotein. Targets infected at the nonpermissive temperature with VSV ts G31 (mutant in the matrix protein) are still susceptible to T cell-mediated lysis but at a lower level of sensitivity. These results are compatible with the interpretation that for VSV-specific T cell lysis of infected target cells, the viral glycoprotein is a major target antigen and must be expressed, and that the matrix protein plays a lesser role, probably by indirectly influencing glycoprotein configuration at the cell surface.  相似文献   

17.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

18.
At a low pH, the influenza virus hemagglutinin (HA) undergoes conformational changes that promote membrane fusion. While the critical role of fusion peptide release from the trimer interface has been demonstrated previously, the role of globular head dissociation in the overall fusion mechanism remains unclear. To investigate this question, we have analyzed in detail the fusion activity and low pH-induced conformational changes of a mutant, Cys-HA, in which the globular head domains are locked together by engineered intermonomer disulfide bonds (L. Godley, J. Pfeifer, D. Steinhauer, B. Ely, G. Shaw, R. Kaufmann, E. Suchanek, C. Pabo, J. J. Skehel, D. C. Wiley, and S. Wharton, Cell 68:635-645, 1992). In this paper, we show that Cys-HA expressed on the cell surface is predominantly a disulfide-bonded trimer. Cell surface Cys-HA is impaired in its membrane fusion activity, as demonstrated by both content-mixing and lipid-mixing fusion assays. It is also impaired in its ability to change conformation at a low pH, as assessed by proteinase K sensitivity. The fusion activity and low pH-induced conformational changes of cell surface Cys-HA are, however, restored to nearly wild-type levels upon reduction of the intermonomer disulfide bonds. By using a set of conformation-specific monoclonal and anti-peptide antibodies, we found that purified Cys-HA trimers are impaired in changes that occur in the globular head domain interface. In addition, changes that occur at a great distance from the engineered intermonomer disulfide bonds, notably release of the fusion peptides, are also impaired. Our results are discussed with respect to current views of the fusion-active conformation of the HA trimer.  相似文献   

19.
Maturation of the vesicular stomatitis virus (VSV) glycoprotein (G) to the cell surface is blocked at the nonpermissive temperature in cells infected with temperature-sensitive mutants in the structural gene encoding for G. We show here that these mutants fall into two discrete classes with respect to the stage of post-translational processing at which the block occurs. In all cases the mutant glycoproteins are inserted normally into the endoplasmic reticulum membrane, receive the two-high-mannose oligosaccharides, and apparently lose the NH2-terminal signal sequence of 16 amino acids. In cells infected with one class of mutants, no further processing of the glycoprotein occurs, and we conclude that the mutant protein is blocked at a pre-Golgi stage. In cells infected with ts L511(V), however, addition of the terminal sugars galactose and sialic acid occurs normally. Thus the maturation of G proceeds through several Golgi functions but is blocked before its appearance on the cell surface. The oligosaccharide chain of ts L511(V) G, accumulated at either the permissive (where surface maturation occurs) or the nonpermissive temperature, lacks one saccharide residue, probably fucose. In addition, no fatty acid residues are added to the ts L511(V) G protein at the nonpermissive temperature, although addition does occur under permissive conditions.  相似文献   

20.
A temperature sensitive mutant of vesicular stomatitis virus which does not mature properly when grown at 39 degrees C promoted extensive fusion of murine neuroblastoma cells at this nonpermissive temperature. Polykaryocytes apparently formed as a result of fusion from within the cells that requires low doses of infectious virions for its promotion and is dependent on viral protein synthesis. Although 90% of infected N-18 neuroblastoma cells were fused by 15 h after infection, larger polykaryocytes continued to form, leading to an average of 28 nuclei per polykaryocyte as a result of polykaryocytes fusing to each other. Two neuroblastoma cell lines have been observed to undergo fusion, whereas three other cell lines (BHK-21, CHO, and 3T3) were incapable of forming polykaryocytes, suggesting that nervous system-derived cells are particularly susceptible to vesicular stomatitis virus-induced fusion. Although the normal assembly of the protein components of this virus is deficient at 39 degrees C, the G glycoprotein was inserted into the infected cell membranes at this temperature. Two lines of evidence suggest that the expression of G at the cell surface promotes this polykaryocyte formation: (i) inhibition of glycosylation, which may be involved in the migration of the G protein to the cellular plasma membranes, will inhibit the cell fusion reaction; (ii) addition of antiserum, directed toward the purified G glycoprotein, will also inhibit cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号