首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 23-kDa protein that was present at higher levels in diapausing 2nd instar larvae than in feeding 2nd instar larvae of Choristoneura fumiferana was purified, and polyclonal antibodies were raised against this protein. The antibodies were subsequently used to screen a cDNA library that was constructed using RNA from 2nd instar larvae. Eight identical cDNA clones were isolated. The cDNA clone had a 665-bp insert and the longest open reading frame coded for a 203-amino acid protein with a predicted molecular mass of 23.37 kDa. The deduced amino acid sequence showed high similarity to glutathione S-transferases and therefore, the cDNA clone was named C. fumiferana glutathione S-transferase (CfGST). Identity of CfGST was confirmed by using affinity-purification as well as enzyme activity assay. CfGST was closer in similarity to insect GST2 members than GST1 members. The apparent Vmax of the purified CfGST towards the substrates glutathione and 1-chloro-2,4-dinitrobenezene (CDNB) were similar. However, the enzyme had a three-fold higher affinity towards CDNB than glutathione. Analyses using Northern blot, immunoblot and immunocytochemistry demonstrated that the fat body was the major tissue where the enzyme was synthesized and stored. Higher levels of CfGST protein were present in diapausing 2nd instar larvae compared to feeding 2nd and 6th instar larvae, suggesting that besides detoxification CfGST may have other roles during insect development that are not readily apparent at present. The CfGST cDNA was expressed in a recombinant baculovirus expression system and an active enzyme was produced.  相似文献   

2.
The gene coding for glutathione S-transferase (GST) has been isolated from the Mytilus edulis hepatopancreas. Open reading frame analysis indicated that the M. edulis GST (meGST) gene encodes a protein of 206 amino acid residues with a calculated molecular mass of 23.68 kDa. The deduced amino acid sequence showed high sequence similarity with the sequence of the pi class GST. The meGST was expressed in Escherichia coli, and the recombinant meGST was purified by affinity chromatography and characterized. The recombinant meGST exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). Kinetic analysis with respect to CDNB as substrate gave a K(m) of 0.68 mM and a V(max) of 0.10 mmol/min per mg protein. The recombinant meGST had a maximum activity at approximately pH 8.5, and its optimum temperature was 39 degrees C. The predicted three-dimensional structure of the meGST revealed the N-terminal domain possesses a thioredoxin fold and the six helices of the C-terminal domain make a alpha-helical bundle. These features indicate that the meGST belongs to pi class GST.  相似文献   

3.
Glutathione S-transferase from the digestive gland of the cold-adapted marine bivalve Icelandic scallop was purified to apparent homogeneity by single GSTrap chromatography. The enzyme appeared to be a homodimer with subunit M(r) 22,000 having an optimum catalytic activity at pH 6.5-7. Enzymatic analysis of scallop GST using the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione resulted in apparent values for K(m)(GST) and K(m)(CDNB) of 0.3 mM and 0.4 mM, respectively. The scallop GST lost activity faster than porcine GST when exposed to increased temperatures, but both enzymes needed 10 min incubation at 60 degrees C for complete inactivation. A partial coding sequence was identified in cDNA synthesised from digestive gland mRNA. Comparison to known sequences indicates that the gene product is a glutathione S-transferase, and the predicted Icelandic scallop GST protein scores 40% sequence identity and 60% sequence similarity to mu-class proteins.  相似文献   

4.
Fluoroacetate-specific defluorinase (FSD) is a critical enzyme in the detoxication of fluoroacetate. This study investigated whether FSD can be classed as a glutathione S-transferase (GST) isoenzyme with a high specificity for fluoroacetate detoxication metabolism. The majority of FSD and GST activity, using 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as GST substrates, in rat liver was cytosolic. GSTT1 specific substrate, EPNP caused a slight non-competitive inhibition of FSD activity. CDNB, a general substrate of GST isoenzyme, was a more potent non-competitive inhibitor of FSD activity. The fluoroacetate defluorination activity by GST isoenzymes was determined in this study. The results showed that the GSTZ1C had the highest fluoroacetate defluorination activity of the various GST isoenzymes studied, while GSTA2 had a limited activity toward fluoroacetate. The human GSTZ1C recombinant protein then was purified from a human GSTZ1C cDNA clone. Our experiments showed that GSTZ1C catalysed fluoroacetate defluorination. GSTZ1 shares many of the characteristics of FSD; however, it accounts only for 3% of the total cytosolic FSD activity. GSTZ1C based enzyme kinetic studies has low affinity for fluoroacetate. The evidence suggests that GSTZ1 may not be the major enzyme defluorinating fluoroacetate, but it does detoxify the fluoroacetate. To clarify the identity of enzymes responsible for fluoroacetate detoxication, further studies of the overall FSD activity are needed.  相似文献   

5.
Substrate binding and the subsequent reaction are the two principal phenomena that underlie the activity of enzymes, and many enzyme-like catalysts were generated based on the phenomena. The single chain variable region fragment of antibody 2F3 (scFv2F3) was elicited against hapten GSH-S-DN2phBu, a conjugate of glutathione (GSH), butyl alcohol, and 1-chloro-2,4-dinitrobenzene (CDNB); it can therefore bind both GSH and CDNB, the substrates of native glutathione S-transferases (GSTs). It was shown previously that there is a serine residue that is the catalytic group of GST in the CDR regions of scFv2F3 close to the sulfhydryl of GSH. Thus, we anticipated that scFv2F3 will display GST activity. The experimental results showed that scFv2F3 indeed displayed GST activity that is equivalent to the rat-class GST T-2-2 and exhibited pH- and temperature-dependent catalytic activity. Steady-state kinetic studies showed that the Km values for the substrates are close to those of native GSTs, indicating that scFv2F3 has strong affinities for the substrates. Compared with some other GSTs, its kcat value was found to be low, which could be caused by the similarity between the GSH-S-DN2phBu and the reaction product of GSH and CDNB. These results showed that our approach to imitating enzymes is correct, which is that an active site may catalyze a chemical reaction when a catalytic group locates beside a substrate-binding site of a receptor. It is important to consider product inhibition in hapten design in order to obtain a mimic with a high catalytic efficiency.  相似文献   

6.
Previously we have purified and characterized a major glutathione S-transferase (GST) activity, GST-4a, from the Thai mosquito Anopheles dirus B, a model mosquito for study of anopheline malaria vectors [Prapanthadara, L. Koottathep, S., Promtet, N., Hemingway, J. and Ketterman, A.J. (1996) Insect Biochem. Mol. Biol. 26:3, 277-285]. In this report we have purified an isoenzyme, GST-4c, which has the greatest DDT-dehydrochlorinase activity. Three additional isoenzymes, GST-4b, GST-5 and GST-6, were also partially purified and characterized for comparison. All of the Anopheles GST isoenzymes preferred 1-chloro-2,4-dinitrobenzene (CDNB) as an electrophilic substrate. In kinetic studies with CDNB as an electrophilic substrate, the V(max) of GST-4c was 24.38 micromole/min/mg which was seven-fold less than GST-4a. The two isoenzymes also possessed different K(m)s for CDNB and glutathione. Despite being only partially pure GST-4b had nearly a four-fold greater V(max) for CDNB than GST-4c. In contrast, GST-4c possessed the greatest DDT-dehydrochlorinase specific activity among the purified insect GST isoenzymes and no activity was detected for GST-5. Seven putative GST substrates used in this study were not utilized by An. dirus GSTs, although they were capable of inhibiting CDNB conjugating activity to different extents for the different isoenzymes. Bromosulfophthalein and ethacrynic acid were the most potent inhibitors. The inhibition studies demonstrate different degrees of interaction of the An. dirus isoenzymes with various insecticides. The GSTs were inhibited more readily by organochlorines and pyrethroids than by the phosphorothioates and carbamate. In a comparison between An. dirus and previous data from An. gambiae the two anopheline species possess a similar pattern of GST isoenzymes although the individual enzymes differ significantly at the functional level. The available data suggests there may be a minimum of three GST classes in anopheline insects.  相似文献   

7.
《Insect Biochemistry》1991,21(4):353-361
The effects of two plant phototoxins (xanthotoxin and harmine) and three plant phenols (quercetin, ellagic acid, and juglone) on detoxification enzymes were studied in the polyphagous cabbage looper, Trichoplusia ni, and the oligophagous black swallowtail, Papilio polyxenes. In P. polyxenes, glutathione S-transferase (GST) activities toward 1-chloro-2,4-dinitrobenzene (CDNB) were 1840 and 1750 nmol CDNB conjugate/mg protein/min in the cytosolic fraction of midgut and fat body, respectively. Dietary xanthotoxin (0.1% fw) increased the activity 2.5 and 2.9-fold in the midgut and fat body, respectively. Xanthotoxin-conjugating GST activity was absent in both tissues. In T. ni, GST activity, 513 nmol CDNB conjugate/mg protein/min in the cytosolic fraction of midgut, was increased almost twofold by dietary xanthotoxin and harmine. Plant phenols effectively inhibited in vitro GST and Se-independent glutathione peroxidase (GPOX) activities in a dose-dependent manner in the two species. Both GST and GPOX of P. polyxenes were 2-fold less sensitive to phenol inhibitors than T. ni. GST inhibition differed according to the nature of the inhibitor in P. polyxenes. Quercetin is competitive with CDNB and is non-competitive with respect to GSH. In contrast, inhibition by ellagic acid is non-competitive with CDNB and competitive with GSH. Juglone showed competitive inhibition with both GSH and CDNB.  相似文献   

8.
9.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

10.
We purified and characterized two major glutathione S-transferase isoenzymes (GST2 and GST3) from snail Bulinus truncatus (Mollusca, Gastropoda, Planorbidae) tissue. The Km with respect to 1-chloro-2, 4-dinitrobenzene (CDNB) for both isoenzymes was increased as the pH decreased. Km of both isoenzymes with respect to glutathione (GSH) doubled when the pH was increased from 6.0 to 6.5. Acid inactivated GST2 and GST3 and the two enzymes were almost inactive at pH 3.5. However, they retain the full activity for at least 20 h when incubated at pH between 6.0 and 9.0. The optimum temperature was 45 degrees C for GST2 and 50 degrees C for GST3. The half lifetime at 50 degrees C was 70 min and 45 min for GST2 and GST3 isoenzymes, respectively. Addition of 5 mM GSH to the incubation buffer increased the half life of both isoenzymes more than fourfold. The activation energy for catalyzing the conjugation of CDNB was 1.826 and 3.435 kcal/mol for GST2 and GST3, respectively. I50 values for Cibacron blue, bromosulphophthalein, indocyanine green, hematin and ethacrynic acid were 0.76 microM, 47.9 microM, 7.59 microM, 0.03 microM and 0.79 microM for GST2, and 0.479 microM, 79.4 microM, 89.1 microM, 32.4 microM and 1.15 microM for GST3, respectively. Cibacron blue and indocyanine green were non-competitive inhibitors, while hematin was a mixed inhibitor. Bromosulphophthalein was found to be a competitive inhibitor for GST2 and a mixed inhibitor for GST3.  相似文献   

11.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

12.
A 28-kDa glutathione S-transferase (Cs28GST) was purified from a Clonorchis sinensis cytosolic fraction through anion-exchange and glutathione-affinity column chromatographies. A monoclonal antibody raised against Cs28GST reacted specifically to the C. sinensis antigen among trematode proteins. A putative peptide of 212 amino residues deduced from a cDNA clone appeared homologous with 28-kDa GST of trematodes, and its secondary structural elements predicted a GSH-binding site. Recombinant Cs28GST showed GST enzyme activity with CDNB substrate and was sensitive to the model inhibitors. The recombinant Cs28GST was antigenically indistinguishable from the native form and was recognized specifically by C. sinensis-infected human sera. The Cs28GST was localized in the tegument and underlying mesenchymal tissues. It is suggested that Cs28GST may play significant physiological roles against bioreactive molecules and be a useful reagent for serodiagnosis of clonorchiasis.  相似文献   

13.
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 microM), GST P1-1 by sulphinpyrazone (IC50 = 66 microM), GST Al-1 by sulphasalazine, and camptothecin (34 and 74 microM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 microM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 microM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.  相似文献   

14.
Interactions between heavy metals, glutathione, glutathione S-transferase (GST), and glutathione reductase (GR) are being investigated by many working groups, but evaluation of the direct effect of Cd+ on these enzymes in vitro is lacking. We report here the effect of cadmium (10, 50, 100, 250 microM CdSO4) on partially purified enzymes from Calystegia sepium. Plants were grown under normal field conditions without metals and the enzymes were extracted by Tris buffer and partially purified by ammonium sulphate fractionation and gel filtration. Glutathione S-transferase activity was measured with different substrates, i.e., 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzylchloride (NBC), and the herbicide Fluorodifen. GST activity was significantly lower in leaf compared to stem, flower, and rhizome and the inhibitory effect of Cd was obtained with NBC and Fluorodifen substrates at 250 microM. There was no effect of Cd on GR activity up to 250 microM.  相似文献   

15.
Male reproductive organs are extremely sensitive to the negative influence of toxic environmental factors as well as drugs, and until now not many attempts have been made at studying the detoxication enzymes and the relationship between the activity of those enzymes and spermatozoa fertility. In the present work we studied cytosolic glutathione-S-transferases (GST, EC 2.5.1.18) from different parts (head, corpus and tail) of bull and boar epididymis. We isolated two molecular forms of GST from each part of epididymis, characterized their biochemical properties and examined the mechanism of the catalyzed reaction. On the basis of their substrate specificity and isoelectric point, the isoforms were found to belong to the near neutral GST class mi. All examined GST forms exhibited higher affinity towards GSH than towards 1-chloro-2,4-dinitrobenzene (CDNB) and bull epididymis GST forms showed biphasic Lineweaver-Burk double reciprocal curves in the presence of GSH as a variable substrate. Boar epididymis anionic GST had the -SH groups both in the GSH and the CDNB binding place, whereas the cationic GST form--arginine residues in the CDNB binding place. Bull epididymis GST forms contained neither thiol nor arginine residues essential for catalytic activity.  相似文献   

16.
A new Anopheles dirus glutathione S-transferase (GST) has been obtained and named adGST4-1. Both genomic DNA and cDNA for heterologous expression were acquired. The genomic sequence was 3188bp and consisted of the GST gene as well as flanking sequence. The flanking sequence was analyzed for possible regulatory elements that would control gene expression. In Drosophila several of these elements have been shown to be involved in development and cell differentiation. The deduced amino acid sequence has low identity compared with the four alternatively spliced enzymes, adGST1-1 to 1-4, from another An. dirus GST gene adgst1AS1. The percent identities are 30--40% and 11--12% comparing adGST4-1 to insect GSTs from Delta and Sigma classes, respectively. Enzyme characterization of adGST4-1 shows it to be distinct from the other An. dirus GSTs because of low enzyme activity for customary GST substrates including 1-chloro-2, 4-dinitrobenzene (CDNB). However, this enzyme has a greater affinity of interaction with pyrethroids compared to the other An. dirus GSTs.  相似文献   

17.
Glutathione S-transferases (GSTs) are multifunctional phase II detoxification enzymes that catalyze the attachment of electrophilic substrates to glutathione. The pi-class GST cDNA (leGSTp) was cloned from the cold-adapted Antarctic bivalve Laternula elliptica. We used degenerated primers designed based on highly conserved regions of known mollusk GSTs to amplify the corresponding L. elliptica mRNA. Full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full sequence of the GST cDNA was 1189 bp in length, with a 5' untranslated region (UTR) of 74 bp, a 3' UTR of 485 bp, and an open reading frame of 630 bp encoding 209 amino acid residues with an estimated molecular mass of 23.9 kDa and an estimated isoelectric point of 8.3. Quantitative RT-PCR confirmed basal expression of leGSTp, which was up-regulated upon heat treatment (10 degrees C for different time periods) by a factor of 2.3 (at 24 h) and 2.7 (at 48 h) in the digestive gland and gill tissues, respectively. The recombinant leGSTp expressed in Escherichia coli was purified by affinity chromatography and characterized. The purified leGSTp exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). The recombinant leGSTp had a maximum activity at approximately pH 8.0, and its optimum temperature was 35 degrees C.  相似文献   

18.
A cDNA of glutathione S-transferase (GST) was isolated from a cDNA library of salivary glands of Boophilus microplus. The recombinant protein was purified by glutathione affinity chromatography and assayed upon the chromogenic substrate CDNB. The 864 bp cloned fragment was sequenced and showed an open reading frame coding for a protein of 220 amino acids. Expression of the GST gene was tested by RT-PCR in tick tissues and larvae mRNA. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to the mammalian class mu GSTs.  相似文献   

19.
In the present report, an efficient method for isolating multiple cytosolic forms of glutathione S-transferases from liver and kidney cytosolic samples of two salmonid species (brown trout and Atlantic salmon) is described, and some of the multiple properties of these enzymes are presented. Glutathione S-transferases were partially purified by low-pressure affinity chromatography on a column with glutathione coupled to agarose, which retained an average of 89.47% of the total activity. The GST activity was appropriated towards CDNB and ETHA as substrates. The application of an HPLC system associated to elestrospray ionization mass spectrometry allowed the identification of five GST cytosolic isoforms, corresponding to subunits with M(r) between 23,700 and 26,900 Da being the main form, with retention time of 17 min, a pi-class-related GST isoenzyme.  相似文献   

20.
Artemisinin is a sesquiterpene lactone containing an endoperoxide bridge. It is a promising new antimalarial and is particularly useful against the drug resistant strains of Plasmodium falciparum. It has unique antimalarial properties since it acts through the generation of free radicals that alkylate parasite proteins. Since the antimalarial action of the drug is antagonised by glutathione and ascorbate and has unusual pharmacokinetic properties in humans, we have investigated if the drug is broken down by a typical reductive reaction in the presence of glutathione transferases. Cytosolic glutathione transferases (GSTs) detoxify electrophilic xenobiotics by catalysing the formation of glutathione (GSH) conjugates and exhibit glutathione peroxidase activity towards hydroperoxides. Artemisinin was incubated with glutathione, NADPH and glutathione reductase and GSTs in a coupled assay system analogous to the standard assay scheme with cumene hydroperoxide as a substrate of GSTs. Artemisinin was shown to stimulate NADPH oxidation in cytosols from rat liver, kidney, intestines and in affinity purified preparations of GSTs from rat liver. Using human recombinant GSTs hetelorogously expressed in Escherichia coli, artemisinin was similarly shown to stimulate NADPH oxidation with the highest activity observed with GST M1-1. Using recombinant GSTs the activity of GSTs with artemisinin was at least two fold higher than the reaction with CDNB. Considering these results, it is possible that GSTs may contribute to the metabolism of artemisinin in the presence of NADPH and GSSG-reductase We propose a model, based on the known reactions of GSTs and sesquiterpenes, in which (1) artemisinin reacts with GSH resulting in oxidised glutathione; (2) the oxidised glutathione is then converted to reduced glutathione via glutathione reductase; and (3) the latter reaction may then result in the depletion of NADPH via GSSG-reductase. The ability of artemisinin to react with GSH in the presence of GST may be responsible for the NADPH utilisation observed in vitro and suggests that cytosolic GSTs are likely to be contributing to metabolism of artemisinin and related drugs in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号