首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Typically fatty acids (FA) exert differential immunomodulatory effects with n-3 [α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and n-6 [linoleic acid (LA) and arachidonic acid (AA)] exerting anti- and pro-inflammatory effects, respectively. This over-simplified interpretation is confounded by a failure to account for conversion of the parent FA (LA and ALA) to longer-chain bioactive products (AA and EPA/DHA, respectively), thereby precluding discernment of the immunomodulatory potential of specific FA. Therefore, we utilized the Δ6-desaturase model, wherein knockout mice (D6KO) lack the Fads2 gene encoding for the rate-limiting enzyme that initiates FA metabolism, thereby providing a model to determine specific FA immunomodulatory effects. Wild-type (WT) and D6KO mice were fed one of four isocaloric diets differing in FA source (9 weeks): corn oil (LA-enriched), arachidonic acid single cell oil (AA-enriched), flaxseed oil (ALA-enriched) or menhaden fish oil (EPA/DHA-enriched). Splenic mononuclear cell cytokine production in response to lipopolysaccharide (LPS), T-cell receptor (TCR) and anti-CD40 stimulation was determined. Following LPS stimulation, AA was more bioactive compared to LA, by increasing inflammatory cytokine production of IL-6 (1.2-fold) and TNFα (1.3-fold). Further, LPS-stimulated IFNγ production in LA-fed D6KO mice was reduced 5-fold compared to LA-fed WT mice, indicating that conversion of LA to AA was necessary for cytokine production. Conversely, ALA exerted an independent immunomodulatory effect from EPA/DHA and all n-3 FA increased LPS-stimulated IL-10 production versus LA and AA. These data definitively identify specific immunomodulatory effects of individual FA and challenge the simplified view of the immunomodulatory effects of n-3 and n-6 FA.  相似文献   

2.
The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition (“fed”) to a high fatty acid, low glucose (“fasted”) condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.  相似文献   

3.
Both attention deficit hyperactivity disorder (ADHD) and dyslexia are suggested to co-occur with altered fatty acid (FA) metabolism, but it is unknown how FAs are associated with the cognitive domains that characterize these disorders. In the project DyAdd, we investigated the associations between FAs in serum phospholipids and phonological processing, reading, spelling, arithmetic, executive functions, and attention. Healthy controls (n=36), adults with ADHD (n=26), dyslexia (n=36), or both (n=9) were included in the study. FAs included saturated, monounsaturated, total polyunsaturated, n-3, and n-6 FAs, together with n-6/n-3, AA/EPA, and LA/ALA ratios. When all the study subjects were included in the analyses, especially polyunsaturated FAs (PUFAs) were positively associated with cognition, but reading was least associated with FAs. These associations were modulated by gender, intelligence, n-3 PUFA intake, and group. Accordingly, within the ADHD group, only few associations emerged with PUFAs, n-6 PUFAs, and cognitive domains, whereas in the dyslexia group the more prevalent associations appeared with PUFAs and n-3 PUFAs.  相似文献   

4.
In this study the effect of single and concomitantly added n-6 or n-3 polyunsaturated fatty acids (PUFAs) was investigated on human prostate cells. Data obtained from the single fatty acids (FAs) experiments showed that except for oleic acid (OA), arachidonic (AA) and linoleic acid (LA), which had very little (less than 10% cells dead) effect on the cells, an increase in dead cells was observed at physiological concentrations of, eicosapentaenoic acid (EPA), gamma-linolenic acid (GLA) and alpha-linolenic acid (ALA). However, this was not the case when combining these acids at physiological concentrations. A slight increase in cell death was only obtained with three combinations of ALA, namely with AA, OA, or GLA. Other combinations with ALA, such as with LA or EPA, had respectively no effect on cell number or increased the cell number by causing less cells to die. Other PUFAs combinations tested, did not show the three groups mentioned with ALA, but only the last two types, namely, no effect, or a decrease in the amount of cell death. The latter might mean that the FA combination had stimulated the cells, since a decrease in the amount of dead cells was observed. Therefore, it is concluded that the characteristics of combined FAs may differ from single FAs, which may explain some controversies in the literature and in response to treatments.  相似文献   

5.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

6.
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.  相似文献   

7.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) lower risk of cardiovascular disease. The primary source of EPA and DHA is fatty fish. Plant-derived alpha linolenic acid (ALA) and stearidonic acid (SDA) could provide sustainable land-based alternatives, but their functionality is underexplored. Omega-3 fatty acids (n-3 FAs) may influence atherogenic processes through changing endothelial cell (EC) function and lowering inflammation. This study compared effects of marine- and plant-derived n-3 FAs on EC inflammatory responses. EA.hy926 cells were exposed to ALA, SDA, EPA or DHA prior to stimulation with tumor necrosis factor (TNF)-α. All FAs were shown to be incorporated into ECs in a dose-dependent manner. SDA (50 μM) decreased both production and cell-surface expression of intercellular adhesion molecule (ICAM)-1; however EPA and DHA resulted in greater reduction of ICAM-1 production and expression. EPA and DHA also significantly lowered production of monocyte chemoattractant protein 1, interleukin (IL)-6 and IL-8. ALA, SDA and DHA (50 μM) all reduced adhesion of THP-1 monocytes to EA.hy926 cells. DHA significantly decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)p105 gene expression and phosphorylated NFκBp65 protein. Both EPA and DHA (50 μM) significantly decreased cyclooxygenase (COX)-2 protein. Thus, both marine-derived n-3 FAs, particularly DHA, had potent anti-inflammatory effects in this EC model. Of the plant-derived n-3 FAs, SDA showed the greatest inhibition of inflammation. Although neither ALA nor SDA reproduced the anti-inflammatory effects of EPA and DHA in this model, there is some potential for SDA to be a sustainable anti-inflammatory alternative to the marine n-3 FAs.  相似文献   

8.
Polyunsaturated fatty acids (PUFA) are essential for the development of the nervous system in animals. It is known that pigs are good models for human in many aspects. The aim of the study was to investigate how fat content and FA composition in sows' diet influence FA composition in brain of newborn and in liver and brain of one-day-old piglets, respectively. High fat (6 %) feeds were designed with regard to saturated or polyunsaturated fat content and n-6/n-3 ratio by adding either oats rich in linoleic acid (LA) or linseed oil rich in alpha-linolenic acid (ALA). The ratio n-6/n-3 PUFA was 11 in all three diets (the low fat (3 %), high fat saturated and high fat oats diet), while the ratio in the linseed oil diet was 2. Increased proportion of ALA in the diet increased ALA and eicosapentaenoic acid (EPA) in piglets' neutral and polar liver lipids and the long chain PUFA, EPA, docosapentaenoic and docosahexaenoic acid in piglet brain. The results suggest that transport of n-3 PUFA from sow to piglet was higher via milk than via bloodstream in the uterus and that increased content of ALA in sows' feed led to an increased accumulation of n-3 FA in piglets' liver and brain.  相似文献   

9.
Feeding strategies based on the addition of plant lipids rich in polyunsaturated fatty acids (PUFAs) in diets of bovines during the finishing period are common to enhance the nutritional value of meat. However, following rumen biohydrogenations, these FAs could still be metabolised in various tissues/organs involved in the FA metabolism such as the liver and adipose tissues (ATs), thus affecting their subsequent deposition in muscles. In this context, the objective of this study was to characterise the various metabolic pathways of linoleic acid (LA) and α-linolenic acid (ALA) in the liver and ATs (subcutaneous (SC) and inter-muscular (IM)) of Normande cull cows fed a diet supplemented (LR) or not (C) with extruded linseeds and rapeseeds, using the ex vivo incubated tissue slice method. Hepatic uptake of both FAs was higher with the LR than with the C diet (P = 0.02). For the two diets, ALA uptake was higher than that of LA (+46%, P = 0.04). ALA was much more degraded by β-oxidation (>50% of ALA present in cells) than LA (~27%) with both diets (P = 0.015). Whatever the diet, ALA was not converted into longer and/or more unsaturated FA, whereas about 14% of LA was converted into 20:4n-6. The intensity of the esterification pathway was higher (+70%, P = 0.004) with the LR than with the C diet, for both FAs. Hepatic secretion of ALA as part of the very-low-density lipoprotein particles was lower than that of LA (-58% and -23% for C and LR diets respectively, P = 0.02). In SC and IM ATs, dietary lipid supplementation did not alter metabolic pathways of LA and ALA. They were efficiently taken up by ATs (>68% of FA present in the medium), with uptake being higher for IM than for SC AT (+12%, P = 0.01). Moreover, LA uptake by ATs was higher than ALA uptake (+10.7%, P = 0.027). Both FAs were mainly esterified (>97% of FA present in adipocytes) into neutral lipids (>85% of esterified FA). Around 9.5% of LA was converted into 20:4n-6, whereas only around 1.3% of ALA was converted into 20:5n-3. We concluded that, in our experimental conditions, liver was highly active in ALA catabolism limiting its subsequent deposition in muscles. However, bovine liver and ATs were inefficient at converting ALA into long-chain n-3 PUFA, but actively converted LA into 20:4n-6.  相似文献   

10.
The metabolites of linoleic (LA) and -linolenic (ALA) acids are involved in coronary heart disease. Both n-6 and n-3 essential fatty acids (EFAs) are likely to be important in prevention of atherosclerosis since the common risk factors are associated with their reduced 6-desaturation. We previously demonstrated the ability of heart tissue to desaturate LA. In this study we examined the ability of cultured cardiomyocytes to metabolize both LA and ALA in vivo, in the absence and in the presence of gamma linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) alone or combined together. In control conditions, about 25% of LA and about 90% of ALA were converted in PUFAs. GLA supplementation had no influence on LA conversion to more unsaturated fatty acids, while the addition of n-3 fatty acids, alone or combined together, significantly decreased the formation of interconversion products from LA. Using the combination of n-6 and n-3 PUFAs, GLA seemed to counterbalance partially the inhibitory effect of EPA and DHA on LA desaturation/elongation. The conversion of ALA to more unsaturated metabolites was greatly affected by GLA supplementation. Each supplemented fatty acid was incorporated to a significant extent into cardiomyocyte lipids, as revealed by gas chromatographic analysis. The n-6/n-3 fatty acid ratio was greatly influenced by the different supplementations; the ratio in GLA+EPA+DHA supplemented cardiomyocytes was the most similar to that recorded in control cardiomyocytes. Since important risk factors for coronary disease may be associated with reduced 6-desaturation of the parent EFAs, administration of n-6 or n-3 EFA metabolites alone could cause undesirable effects. Since they appear to have different and synergistic roles, only combined treatment with both n-6 and n-3 metabolites is likely to achieve optimum results.  相似文献   

11.
The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that supplementation of GCO increases serum and liver ALA, EPA, DHA and decreases LA and AA in rats. Therefore, the GCO can be considered as a potential, alternate dietary source of ALA.  相似文献   

12.
13.
Studies suggested that in human adults, linoleic acid (LA) inhibits the biosynthesis of n-3 long-chain polyunsaturated fatty acids (LC-PUFA), but their effects in growing subjects are largely unknown. We used growing pigs as a model to investigate whether high LA intake affects the conversion of n-3 LC-PUFA by determining fatty acid composition and mRNA levels of Δ5- and Δ6 desaturase and elongase 2 and -5 in liver and brain. In a 2 × 2 factorial arrangement, 32 gilts from eight litters were assigned to one of the four dietary treatments, varying in LA and α-linolenic acid (ALA) intakes. Low ALA and LA intakes were 0.15 and 1.31, and high ALA and LA intakes were 1.48 and 2.65 g/kg BW0.75 per day, respectively. LA intake increased arachidonic acid (ARA) in liver. ALA intake increased eicosapentaenoic acid (EPA) concentrations, but decreased docosahexaenoic acid (DHA) (all P < 0.01) in liver. Competition between the n-3 and n-6 LC-PUFA biosynthetic pathways was evidenced by reductions of ARA (>40%) at high ALA intakes. Concentration of EPA (>35%) and DHA (>20%) was decreased by high LA intake (all P < 0.001). Liver mRNA levels of Δ5- and Δ6 desaturase were increased by LA, and that of elongase 2 by both ALA and LA intakes. In contrast, brain DHA was virtually unaffected by dietary LA and ALA. Generally, dietary LA inhibited the biosynthesis of n-3 LC-PUFA in liver. ALA strongly affects the conversion of both hepatic n-3 and n-6 LC-PUFA. DHA levels in brain were irresponsive to these diets. Apart from Δ6 desaturase, elongase 2 may be a rate-limiting enzyme in the formation of DHA.  相似文献   

14.
IntroductionLong chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) such as EPA and DHA have been shown to possess beneficial health effects, and it is believed that many of their effects are mediated by their oxygenated products (oxylipins). Recently, we have shown that serum levels of several hydroxy, epoxy, and dihydroxy FAs are dependent on the individual status of the parent FAs in a cohort of normo- and hyperlipidemic subjects. So far, the effect of an increased dietary LC n-3 PUFA intake on hydroxy, epoxy, and dihydroxy FA levels has not been investigated in subjects with mild combined hyperlipidemia.Subjects and methodsIn the present study, we compared oxylipin patterns of 10 hyperlipidemic (cholesterol >200 mg/dl; triglyceride >150 mg/ml) and 10 normolipidemic men in response to twelve weeks of LC n-3 PUFA intake (1.14 g DHA and 1.56 g EPA). Levels of 44 free hydroxy, epoxy and dihydroxy FAs were analyzed in serum by LC-MS. Additionally, oxylipin levels were compared with their parent PUFA levels in erythrocyte membranes; a biomarker for the individual PUFA status.ResultsDifferences in the oxylipin pattern between normo- and hyperlipidemic subjects were minor before and after treatment. In all subjects, levels of EPA-derived oxylipins (170–4800 pM) were considerably elevated after LC n-3 PUFA intake (150–1400%), the increase of DHA-derived oxylipins (360–3900 pM) was less pronounced (30–130%). The relative change of EPA in erythrocyte membranes is strongly correlated (r≥0.5; p<0.05) with the relative change of corresponding epoxy and dihydroxy FA serum levels. The effect on arachidonic acid (AA)-derived oxylipin levels (140–27,100 pM) was inconsistent.Discussion and conclusionsThe dietary LC PUFA composition has a direct influence on the endogenous oxylipin profile, including several highly biological active EPA- and DHA-derived lipid mediators. The shift in oxylipin pattern appears to be dependent on the initial LC PUFA status particularly for EPA. The finding that also levels of other oxylipins derived from ALA, LA or AA are modified by LC n-3 PUFA intake might suggest that at least some of the effects of EPA and DHA could be mediated by a shift in the entire oxylipin profile.  相似文献   

15.
Sesamin is a specific inhibitor of Δ5 desaturation, the conversion from dihomo-γ-linolenic acid (20: 3, n-6) to arachidonic acid (AA, 20: 4, n-6). Previously, we reported that sesamin inhibited Δ5 desaturation of n-6 fatty acids in rat hepatocytes but not that of n-3 fatty acids, from 20: 4 (n-3) to eicosapentaenoic acid (EPA, 20: 5, n-3). In this study, we investigated the interaction of sesamin and EPA on Δ5 desaturation of both series and the n-6/n-3 fatty acids ratio by measuring actural fatty acid contents in vivo. Rats were fed three types of dietary oils; 1) linoleic acid (LA, 18: 2, n-6): linolenic acid (LLA, 18: 3, n-3) = 3: 1, n-6/n-3 ratio of 3: 1 (LA group), 2) LA: LLA =1: 3, n-6/n-3 ratio of 1: 3 (LLA group), 3) LA: LLA: EPA =1: 0.5: 3, n-6/n-3 ratio of 1: 3.5 (EPA group) with or without sesamin (0.5% w/w) for 4 weeks. In all groups, sesamin administration increased the content of dihomo-γ-linolenic acid (20: 3, n-6) in the liver and decreased the Δ5 desaturation index of n-6 fatty acid, the ratio of 20: 4/20: 3 (n-6). On the contrary, the Δ5 desaturation index of n-3 fatty acid, the ratio of 20: 5 + 22: 5 + 22: 6/20: 4 (n-3), was increased by the administration of sesamin. These results suggest that sesamin inhibits the A5 desaturation of n-6 fatty acid, but not that of n-3 fatty acid in rat livers. Sesamin administration decreased incorporation of EPA (n-3) and simultaneously increased the AA (n-6) content in the liver. The n-6/n-3 ratio in the liver was increased by administering sesamin under n-3 rich conditions, i.e., the LLA and EPA groups.  相似文献   

16.
Attention-deficit/hyperactivity disorder (ADHD) is the most prevalent behavioral disorder in children and the pathophysiology remains obscure. In addition to the pharmacotherapy, which is the primary treatment of ADHD, nutritional intervention may have a significant impact on ADHD symptoms. We studied lipid and lipoprotein profiles, fatty acid (FA) composition, and oxidant-antioxidant status in 37 pediatric ADHD patients and 35 healthy control subjects. Our results show that plasma triacylglycerols and phospholipids were lower, whereas free cholesterol, HDL, and apolipoprotein A-I were higher in ADHD patients compared with controls. The proportion of plasma EPA and DHA was higher, but that of oleic and alpha-linolenic (ALA) acids was lower. As expected from these findings, the proportions of both total saturates and polyunsaturates fatty acids (PUFA) were higher and lower, respectively, in ADHD patients than in controls, which led to a significant decrease in the PUFAs/saturates ratio. On the other hand, the ratios of eicosatrienoic acid to arachidonic acid and of palmitoleic acid to linoleic acid, established indexes of essential fatty acid (EFA) status remained unchanged revealing that EFA did not affect ADHD patients. Similarly, the activity of delta-6 desaturase, estimated by the ratio of 18:2(n-6)/20:4(n-6), was found unaffected, whereas ALA/EPA was diminished. Lessened lipid peroxidation was noted in ADHD subjects as documented by the diminished values of plasma malondialdehyde accompanied by increased concentrations of gamma-tocopherol. In conclusions, significant changes occur in the lipid and lipoprotein profiles, as well as in the oxidant-antioxidant status of ADHD patients, however, the FA distribution does not reflect n-3 FA deficiency.  相似文献   

17.
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.  相似文献   

18.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

19.
In project DyAdd, we compared the fatty acid (FA) profiles of serum phospholipids in adults with attention deficit hyperactivity disorder (ADHD) (n=26), dyslexia (n=36), their comorbid combination (n=9), and healthy controls (n=36). FA proportions were analyzed in a 2×2 design with Bonferroni corrected post hoc comparisons. A questionnaire was used to assess dietary fat quality and use of supplements. Results showed that ADHD and dyslexia were not associated with total saturated FAs, monounsaturated FAs, or n-3 polyunsaturated FAs (PUFAs). However, those with ADHD had elevated proportions of total n-6 PUFAs (including γ-linolenic and adrenic acids) as compared to those without ADHD. Dyslexia was related to a higher proportion of monounsaturated nervonic acid and a higher ratio of n-6/n-3 PUFAs. Among females none of the associations were significant. However in males, all the original associations observed in all subjects remained and ADHD was associated with elevated nervonic acid and n-6/n-3 PUFA ratio like dyslexia. Controlling for poorly diagnosed reading difficulties, education, dietary fat quality, or use of FA supplements did not generally remove the originally observed associations.  相似文献   

20.
Dietary n-3 fatty acids generally attenuate elevated cyclooxygenase-2 (COX-2) levels in disease states. However, models of renal cystic disease (RCD) exhibit reduced renal COX-2 expression. Therefore, the in vivo regulation of COX-2 expression by dietary n-3 fatty acids was examined. In archived tissues from dietary studies, COX-2 protein and gene expression was up-regulated in diseased pcy mouse and Han:SPRD-cy rat kidneys when given diets containing eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA), but not those containing -linolenic acid (ALA), compared to control diets with linoleic acid (LA). The presence of disease was necessary to elicit these effects as COX-2 expression was unaltered by diet in normal kidneys. The effects were specific for COX-2, since COX-1 levels were unaltered by these dietary manipulations in either model. Thus, in RCD, diets containing EPA and DHA but not ALA appear to specifically up-regulate renal COX-2 gene and protein levels in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号