首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eph receptors and ephrins have been implicated in a variety of cellular processes, including morphology and motility, because of their ability to modulate intricate signaling networks. Here we show that the phosphotyrosine binding (PTB) domain-containing proteins AIDA-1b and Odin are tightly associated with the EphA8 receptor in response to ligand stimulation. Both AIDA-1b and Odin belong to the ankyrin repeat and sterile alpha motif domain-containing (Anks) protein family. The PTB domain of Anks family proteins is crucial for their association with the juxtamembrane domain of EphA8, whereas EphA8 tyrosine kinase activity is not required for this protein-protein interaction. In addition, we found that Odin is a more physiologically relevant partner of EphA8 in mammalian cells. Interestingly, overexpression of the Odin PTB domain alone attenuated EphA8-mediated inhibition of cell migration in HEK293 cells, suggesting that it acts as a dominant-negative mutant of the endogenous Odin protein. More importantly, small interfering RNA-mediated Odin silencing significantly diminished ephrinA5-induced EphA8 signaling effects, which inhibit cell migration in HEK293 cells and retract growing neurites of Neuro2a cells. Taken together, our findings support a possible function for Anks family proteins as scaffolding proteins of the EphA8 signaling pathway.  相似文献   

2.
G protein-coupled receptors are regulated by ligand stimulation, endocytosis, degradation of recycling to the cell surface. Little information is available on the molecular mechanisms underlying G protein-coupled receptors recycling. We have investigated recycling of the G protein-coupled thyroid stimulating hormone receptor (TSHR) and found that it relies on hScrib, a membrane-associated PDZ protein. hScrib directly binds to TSHR, inhibits basal receptor endocytosis and promotes recycling, and thus TSHR signalling, at the cell membrane. We previously demonstrated that hScrib is associated with a betaPIX-GIT1 complex comprised of a guanine nucleotide exchange factor and a GTPase-activating protein for ADP ribosylation factors that is involved in vesicle trafficking. We used dominant-negative constructs and small interfering RNA to show that TSHR recycling is regulated by the interaction between hScrib and betaPIX, and by the activity of GIT1. In addition, ARF6, a major target for GIT1, is activated during TSH stimulation of HEK293 and FRTL-5 thyroid cells, and plays a key role in TSHR recycling. Thus, we have uncovered an hScrib-betaPIX-GIT1-ARF6 pathway devoted to TSHR trafficking and function.  相似文献   

3.
Phosphatidylinositol 3-kinase inhibitors have been shown to affect endocytosis or subsequent intracellular sorting in various receptor systems. Agonist-activated beta(2)-adrenergic receptors undergo desensitization by mechanisms that include the phosphorylation, endocytosis and degradation of receptors. Following endocytosis, most internalized receptors are sorted to the cell surface, but some proportion is sorted to lysosomes for degradation. It is not known what governs the ratio of receptors that recycle versus receptors that undergo degradation. To determine if phosphatidylinositol 3-kinases regulate beta(2)-adrenergic receptor trafficking, HEK293 cells stably expressing these receptors were treated with the phosphatidylinositol 3-kinase inhibitors LY294002 or wortmannin. We then studied agonist-induced receptor endocytosis and postendocytic sorting, including recycling and degradation of the internalized receptors. Both inhibitors amplified the internalization of receptors after exposure to the beta-agonist isoproterenol, which was attributable to the sorting of a significant fraction of receptors to an intracellular compartment from which receptor recycling did not occur. The initial rate of beta(2)-adrenergic receptor endocytosis and the default rate of receptor recycling were not significantly altered. During prolonged exposure to agonist, LY294002 slowed the degradation rate of beta(2)-adrenergic receptors and caused the accumulation of receptors within rab7-positive vesicles. These results suggest that phosphatidylinositol 3-kinase inhibitors (1) cause a misrouting of beta(2)-adrenergic receptors into vesicles that are neither able to efficiently recycle to the surface nor sort to lysosomes, and (2) delays the movement of receptors from late endosomes to lysosomes.  相似文献   

4.
Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors.  相似文献   

5.
Recently, we demonstrated the transactivation of the epidermal growth factor receptor (EGFR) in response to interferon γ (IFNγ) in epidermoid carcinoma A431 cells. It was shown that IFNγ-induced EGFR transactivation is impossible in the some cancer epithelial cells. Here, we hypothesize that IFNγ-dependent EGFR transactivation in these cells correlates to the amount of EGFR on the surface of the cell. To test this suggestion, a line of stably transfected HEK293 cells (HEK293Δ99 cells) expressing a high level of mutant EGFR that lacked 99 C-terminal residues was obtained. Unlike the parent HEK293 cells, which lacked transactivation, HEK293Δ99 cells demonstrated EGFR transactivation in response to IFNγ. In HEK293Δ99 and A431 cells, the time courses of EGFR activation induced by IFNγ have the same pattern. In HEK293Δ99, as in A431 cells, IFNγ-induced EGFR transactivation requires EGFR kinase activity and occurs via an autophosphorylation mechanism. Taken together, these data provide direct evidence for the dependence of IFNγ-induced EGFR transactivation upon EGFR expression level in epithelial cells.  相似文献   

6.
A-kinase Anchoring Proteins (AKAPs) define an expanding group of scaffold proteins that display a signature binding site for the RI/RII subunit of protein kinase A. AKAP5 and AKAP12 are multivalent (with respect to protein kinases and phosphatases) and display the ability to associate with the prototypic member of G protein-coupled receptors, the beta(2)-adrenergic receptor. We probed the relative abundance, subcellular distribution and localization of AKAP5 and AKAP12 in human embryonic kidney HEK293 and epidermoid carcinoma A431 cells. HEK293 cells are relatively rich in AKAP5 (found mostly in association with the cell membrane); whereas A431 cells are rich in AKAP12 (found distributed both in the cytoplasm and in association with the cell membrane). In biochemical analysis of subcellular fractions and in whole-cell imaging, the membrane localization of AKAP5 was decreased in response to treating cells with the beta-adrenergic agonist isoproterenol, whereas membrane association of AKAP12 was increased initially in response to agonist treatment. These data demonstrate quantitatively a clearly different pattern of AKAP-receptor association for AKAP5 versus AKAP12. AKAP5 remains associated with its G-protein-coupled receptor, at the cell membrane, docked with the receptor during agonist-induced internalization and later receptor recycling after agonist wash-out. AKAP12-receptor docking, in contrast, is dynamic, driven by agonist stimulation (accounting for movement of AKAP12 from the cytoplasm to the cell membrane). AKAP12 then is internalized with the beta(2)-adrenergic receptor, but segregates away from the G-protein-coupled receptor upon recycling of the internalized receptor to the cell membrane. Thus these homologous, AKAPs that dock G-protein-coupled receptors have markedly different patterns of trafficking, docking, and re-distribution.  相似文献   

7.
The corticotropin releasing factor (CRF) type 1alpha receptor, a member of the G protein-coupled receptor (GPCR) subfamily B, is involved in the aetiology of anxiety and depressive disorders. In the present study, we examined the internalization and trafficking of the CRF1alpha receptor in both human embryonic kidney (HEK)293 cells and primary cortical neurons. We found that CRF1alpha receptor activation leads to the selective recruitment of beta-arrestin2 in both HEK293 cells and neurons. We observed distinct distribution patterns of CRF1alpha receptor and beta-arrestin2 in HEK293 cells and cortical neurons. In HEK293 cells, beta-arrestin2-green fluorescent protein (GFP) co-localized with CRF1alpha receptor in vesicles at the plasma membrane but was dissociated from the receptor in endosomes. In contrast, in primary cortical neurons, beta-arrestin2 and CRF1alpha receptor were internalized in distinct endocytic vesicles. By bioluminescence resonance energy transfer, we demonstrated that beta-arrestin2 association with CRF1alpha receptor was increased in cells transfected with G protein-coupled receptor kinase (GRK)3 and GRK6 and decreased in cells transfected with GRK2 and GRK5. In both HEK293 cells and cortical neurons, internalized CRF1alpha receptor transited from Rab5-positive early endosomes to Rab4-positive recycling endosomes and was not targeted to lysosomes. However, CRF1alpha receptor resensitization was blocked by the overexpression of wild-type, but not dominant-negative, Rab5 and Rab4 GTPases. Taken together, our results suggest that beta-arrestin trafficking differs between HEK293 cells and neurons, and that CRF1alpha receptor resensitization is regulated in an atypical manner by Rab GTPases.  相似文献   

8.
RAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking. We hypothesized that a PDZ type I domain present in the C terminus of RAMP3, but not in RAMP1 or RAMP2, leads to protein-protein interactions that determine receptor trafficking. Employing adenylate cyclase assays, radioligand binding, and immunofluorescence microscopy, we observed that in HEK293 cells the CRLR-RAMP complex undergoes agonist-stimulated desensitization and internalization and fails to resensitize (i.e. degradation of the receptor complex). Co-expression of N-ethylmaleimide-sensitive factor (NSF) with the CRLR-RAMP3 complex, but not CRLR-RAMP1 or CRLR-RAMP2 complex, altered receptor trafficking to a recycling pathway. Mutational analysis of RAMP3, by deletion and point mutations, indicated that the PDZ motif of RAMP3 interacts with NSF to cause the change in trafficking. The role of RAMP3 and NSF in AM2R recycling was confirmed in rat mesangial cells, where RNA interference with RAMP3 and pharmacological inhibition of NSF both resulted in a lack of receptor resensitization/recycling after agonist-stimulated desensitization. These findings provide the first functional difference between the AM1R and AM2R at the level of post-endocytic receptor trafficking. These results indicate a novel function for RAMP3 in the post-endocytic sorting of the AM-R and suggest a broader regulatory role for RAMPs in receptor trafficking.  相似文献   

9.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

10.
For the beta(2)-adrenergic receptor (beta(2)AR), published evidence suggests that an intact actin cytoskeleton is required for the endocytosis of receptors and their proper sorting to the rapid recycling pathway. We have characterized the role of the actin cytoskeleton in the regulation of beta(2)AR trafficking in human embryonic kidney 293 (HEK293) cells using two distinct actin filament disrupting compounds, cytochalasin D and latrunculin B (LB). In cells pretreated with either drug, beta(2)AR internalization into transferrin-positive vesicles was not altered but both agents significantly decreased the rate at which beta(2)ARs recycled to the cell surface. In LB-treated cells, nonrecycled beta(2)ARs were localized to early embryonic antigen 1-positive endosomes and also accumulated in the recycling endosome (RE), but only a small fraction of receptors localized to LAMP-positive late endosomes and lysosomes. Treatment with LB also markedly enhanced the inhibitory effect of rab11 overexpression on receptor recycling. Dissociating receptors from actin by expression of the myosin Vb tail fragment resulted in missorting of beta(2)ARs to the RE, while the expression of various CART fragments or the depletion of actinin-4 had no detectable effect on beta(2)AR sorting. These results indicate that the actin cytoskeleton is required for the efficient recycling of beta(2)ARs, a process that likely is dependent on myosin Vb.  相似文献   

11.
Thériault C  Rochdi MD  Parent JL 《Biochemistry》2004,43(19):5600-5607
Intracellular trafficking pathways of G protein-coupled receptors (GPCRs), following their agonist-induced endocytosis and their consequences on receptor function, are the subject of intense research efforts. However, less is known regarding their constitutive endocytosis. We previously demonstrated that the beta isoform of the thromboxane A(2) receptor (TPbeta) undergoes constitutive and agonist-induced endocytosis. Constitutive endocytosis of GPCRs can lead to the formation of an intracellular pool of receptors from which they can recycle back to the cell surface. In the present report, we show with the help of two TPbeta mutants (TPbeta-Y339A and TPbeta-I343A) specifically deficient in constitutive endocytosis that this intracellular pool of receptors serves to maintain agonist sensitivity over prolonged receptor stimulation in HEK293 cells. Second messenger generation by the TPbeta-Y339A and TPbeta-I343A mutants was drastically reduced compared to the wild-type receptor as suggested by dose-response and time-course experiments of inositol phosphates production following agonist treatment, despite normal coupling between the receptors and the Galpha(q) protein. Moreover, second messenger production after receptor activation was dramatically reduced when cells were pretreated with monensin, a recycling inhibitor. Receptor cell surface expression and endocytosis experiments further revealed that the small GTPase Rab11 protein is a determinant factor in controlling TPbeta recycling back to the cell surface. Co-localization experiments performed by immunofluorescence microscopy indicated that both constitutive and agonist-triggered endocytosis resulted in targeting of TPbeta to the Rab11-positive recycling endosome. Thus, we provide evidence that constitutive endocytosis of TPbeta forms a pool of receptors in the perinuclear recycling endosome from which they recycle to the cell surface, a process involved in preserving receptor sensitivity to agonist stimulation.  相似文献   

12.
We apply a mathematical model for receptor-mediated cell uptake and processing of epidermal growth factor (EGF) to analyze and predict proliferation responses to fibroblastic cells transfected with various forms of the EGF receptor (EGFR) to EGF. The underlying conceptual hypothesis is that the mitogenic signal generated by EGF/EGFR binding on the cell surface, via stimulation of receptor tyrosine kinase activity, is attenuated when the receptors are downregulated and growth factor is depleted by endocytic internalization and subsequent intracellular degradation. Hence, the cell proliferation rate ought to depend on receptor/ligand binding and trafficking parameters as well as on intrinsic receptor signal transduction properties. The goal of our modeling efforts is to formulate this hypothesis in quantitative terms. The mathematical model consists of kinetic equations for binding, internalization, degradation, and recycling of EGF and EGFR, along with an expression relating DNA synthesis rate to EGF/EGFR complex levels. Parameter values have been previously determined from independent binding and trafficking kinetic experiments on B82 fibroblasts transfected with wild-type and mutant EGFR. We show that this model can successfully interpret literature data for EGF-dependent growth of NR6 fibroblasts transfected with wild-type EGFR. Moreover, it successfully predicts the literature observation that NR6 cells transfected with a delta 973 truncation mutant EGFR, which is kinase-active but internalization-deficient, require an order of magnitude lower EGF concentration than cells with wild-type EGFR for half-maximal proliferation rate. This result demonstrates that it may be feasible to genetically engineer mammalian cell lines with reduced growth factor requirements by a rational, nonempirical approach. We explore by further model computations the possibility of exploiting other varieties of EGFR mutants to alter growth properties of fibroblastic cells, based on relationships between changes in the primary structure of the EGF receptor and the rates of specific receptor/ligand binding and trafficking processes. Our studies show that the ability to predict cell proliferation as a function of serum growth factors such as EGF could lead to the designed development of cells with optimized growth responses. This approach may also aid in elucidation of mechanisms underlying loss of normal cell proliferation control in malignant transformation, by demonstrating that receptor trafficking dynamics may in some cases play as important a role as intrinsic signal transduction in determining the overall resulting mitogenic response.  相似文献   

13.
Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control the overall process of down-regulation. We have identified the Na(+)/H(+) exchanger regulatory factor (NHERF) as an important molecular component that stabilizes epidermal growth factor receptors (EGFRs) at the cell surface to restrict receptor down-regulation. The NH(2)-terminal PDZ domain (PDZ 1) of NHERF specifically binds to an internal peptide motif located within the COOH-terminal regulatory domain of EGFR. Expression of NHERF slows the rate of EGF-induced receptor degradation. A point mutation that abolishes the PDZ 1 recognition sequence of EGFR enhances the rate of ligand-induced endocytosis and down-regulation of EGFR. Similarly, expression of a dominant negative mutant of NHERF enhances EGF-induced receptor down-regulation. In contrast to beta-adrenergic receptors where NHERF enhances recycling of internalized receptors, NHERF stabilizes EGFR at the cell surface and slows the rate of endocytosis without affecting recycling. Although the mechanisms differ, for both RTKs and G protein-coupled receptors, the overall effect of NHERF is to enhance the fraction of receptors present at the cell surface.  相似文献   

14.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is an endosomal protein essential for the efficient sorting of activated growth factor receptors into the lysosomal degradation pathway. Hrs undergoes ligand-induced tyrosine phosphorylation on residues Y329 and Y334 downstream of epidermal growth factor receptor (EGFR) activation. It has been difficult to investigate the functional roles of phosphoHrs, as only a small proportion of the cellular Hrs pool is detectably phosphorylated. Using an HEK 293 model system, we found that ectopic expression of the protein Cbl enhances Hrs ubiquitination and increases Hrs phosphorylation following cell stimulation with EGF. We exploited Cbl's expansion of the phosphoHrs pool to determine whether Hrs tyrosine phosphorylation controls EGFR fate. In structure-function studies of Cbl and EGFR mutants, the level of Hrs phosphorylation and rapidity of apparent Hrs dephosphorylation correlated directly with EGFR degradation. Differential expression of wild-type versus Y329,334F mutant Hrs in Hrs-depleted cells revealed that one or both tyrosines regulate ligand-dependent Hrs degradation, as well as EGFR degradation. By modulating Hrs ubiquitination, phosphorylation, and protein levels, Cbl may control the composition of the endosomal sorting machinery and its ability to target EGFR for lysosomal degradation.  相似文献   

15.
Type-specific sorting of G protein-coupled receptors after endocytosis   总被引:7,自引:0,他引:7  
The beta(2)-adrenergic receptor (B2AR) and delta-opioid receptor (DOR) are structurally distinct G protein-coupled receptors (GPCRs) that undergo rapid, agonist-induced internalization by clathrin-coated pits. We have observed that these receptors differ substantially in their membrane trafficking after endocytosis. B2AR expressed in stably transfected HEK293 cells exhibits negligible (<10%) down-regulation after continuous incubation of cells with agonist for 3 h, as assessed both by radioligand binding (to detect functional receptors) and immunoblotting (to detect total receptor protein). In contrast, DOR exhibits substantial (>/=50%) agonist-induced down-regulation when examined by similar means. Degradation of internalized DOR is sensitive to inhibitors of lysosomal proteolysis. Flow cytometric and surface biotinylation assays indicate that differential sorting of B2AR and DOR between distinct recycling and non-recycling pathways (respectively) can be detected within approximately 10 min after endocytosis, significantly before the onset of detectable proteolytic degradation of receptors ( approximately 60 min after endocytosis). Studies using pulsatile application of agonist suggest that after this sorting event occurs, later steps of membrane transport leading to lysosomal degradation of receptors do not require the continued presence of agonist in the culture medium. These observations establish that distinct GPCRs differ significantly in endocytic membrane trafficking after internalization by the same membrane mechanism, and they suggest a mechanism by which brief application of agonist can induce substantial down-regulation of receptors.  相似文献   

16.
Endosomal trafficking of receptors and associated proteins plays a critical role in signal processing. Until recently, it was thought that trafficking was shut down during cell division. Thus, remarkably, the regulation of trafficking during division remains poorly characterized. Here we delineate the role of mitotic kinases in receptor trafficking during asymmetric division. Targeted perturbations reveal that Cyclin-dependent Kinase 1 (CDK1) and Aurora Kinase promote storage of Fibroblast Growth Factor Receptors (FGFRs) by suppressing endosomal degradation and recycling pathways. As cells progress through metaphase, loss of CDK1 activity permits differential degradation and targeted recycling of stored receptors, leading to asymmetric induction. Mitotic receptor storage, as delineated in this study, may facilitate rapid reestablishment of signaling competence in nascent daughter cells. However, mutations that limit or enhance the release of stored signaling components could alter daughter cell fate or behavior thereby promoting oncogenesis.

This study provides fundamental insights into the crosstalk between cell division and signaling, with implications for cancer. High-resolution in vivo analysis reveals that dividing cells sequester signal receptor proteins into internal compartments; stored receptors are then redistributed as cells complete division.  相似文献   

17.
Internalization is an important mechanism regulating the agonist-dependent responses of G-protein-coupled receptors. The internalization of the M(2) muscarinic cholinergic receptors (mAChR) in HEK293 cells has been demonstrated to occur by an unknown mechanism that is independent of arrestins and dynamin. In this study we examined various aspects of the trafficking of the M(2) mAChR in HEK293 cells to characterize this unknown pathway of internalization. Internalization of the M(2) mAChR was rapid and extensive, but prolonged incubation with agonist did not lead to appreciable down-regulation (a decrease in total receptor number) of the receptors. Recovery of M(2) mAChRs to the cell surface following agonist-mediated internalization was a very slow process that contained protein synthesis-dependent and -independent components. The protein synthesis-dependent component of the recovery of receptors to the cell surface did not appear to reflect a requirement for synthesis of new receptors, as no changes in total receptor number were observed either in the presence or absence of cycloheximide. Phosphorylation of the M(2) mAChR did not appear to influence the rate or extent of the recovery of receptors to the cell surface, as the recovery of a phosphorylation-deficient mutant M(2) mAChR, the N,C(Ala-8) mutant, was similar to the recovery of the wild type M(2) mAChR. Finally, the constitutive, nonagonist-dependent internalization and recycling of the M(2) mAChR was very slow and also contained protein synthesis-dependent and -independent components, suggesting that a similar pathway controls the recovery from agonist-dependent and -independent internalization. Overall, these data demonstrated a variety of previously unappreciated facets involved in the regulation of M(2) mAChRs.  相似文献   

18.
Many G-protein coupled receptors (GPCRs) undergo ligand-dependent homologous desensitization and internalization. Desensitization, defined as a decrease in the responsiveness to ligand, is accompanied by receptor aggregation on the cell surface and internalization via clathrin-coated pits to an intracellular endosomal compartment. In this study, we have taken advantage of the trafficking properties of GPCRs to develop a useful screening method for the identification of receptor mimetics. A series of studies were undertaken to evaluate the expression, functionality, and ligand-dependent trafficking of GPCR-green fluorescent protein (GFP) fusion conjugates stably transfected into HEK 293 cells. These GPCR-GFP expressing cells were then utilized in the validation of the ArrayScantrade mark (Cellomicstrade mark, Pittsburgh, PA), a microtiter plate imaging system that permits cellular and subcellular quantitation of fluorescence in whole cells. These studies demonstrated our ability to measure the internalization of a parathyroid hormone (PTH) receptor-GFP conjugate after ligand treatment by spatially resolving internalized receptors. Internalization was time- and dose-dependent and appeared to be selective for PTH. Similar results were obtained for a beta(2)-adrenergic receptor (beta(2) AR)-GFP conjugate stably expressed in HEK 293 cells. The internalized GFP-labeled receptors were visualized as numerous punctate 3spots2 within the cell interior. An algorithm has been developed that identifies and collects information about these spots, allowing quantification of the internalization process. Variables such as the receptor-GFP expression level, plating density, cell number per field, number of fields scanned per well, spot size, and spot intensity were evaluated during the development of this assay. The method represents a valuable tool to screen for receptor mimetics and antagonists of receptor internalization in whole cells rapidly.  相似文献   

19.
Intracellular trafficking pathways of cell surface receptors following their internalization are the subject of intense research efforts. However, the mechanisms by which they recycle back to the cell surface are still poorly defined. We have recently demonstrated that the small Rab11 GTPase protein is a determinant factor in controlling the recycling to the cell surface of the beta-isoform of the thromboxane A2 receptor (TPbeta) following its internalization. Here, we demonstrate with co-immunoprecipitation studies in HEK293 cells that there is a Rab11-TPbeta association occurring in the absence of agonist, which is not modulated by stimulation of TPbeta. We show with purified TPbeta intracellular domains fused to GST and HIS-Rab11 proteins that Rab11 interacts directly with the first intracellular loop and the C-tail of TPbeta. Amino acids 335-344 of the TPbeta C-tail were determined to be essential for the interaction of Rab11 with this receptor domain. This identified sequence appears to be important in directing the intracellular trafficking of the receptor from the Rab5-positive intracellular compartment to the perinuclear recycling endosome. Interestingly, our data indicate that TPbeta interacts with the GDP-bound form, and not the GTP-bound form, of Rab11 which is necessary for recycling of the receptor back to the cell surface. To our knowledge, this is the first demonstration of a direct interaction between Rab11 and a transmembrane receptor.  相似文献   

20.
Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-α causes receptor recycling. TGF-α therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-α, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking.
We have compared the effect of six different ligands on endocytic trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-α and epiregulin lead to complete receptor recycling. EGF leads to lysosomal degradation of the majority but not all EGFRs. Amphiregulin does not target EGFR for lysosomal degradation but causes fast as well as slow EGFR recycling. The Cbl ubiquitin ligases, especially c-Cbl, are responsible for EGFR ubiquitination after stimulation with all ligands, and persistent EGFR phosphorylation and ubiquitination largely correlate with receptor degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号