首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matsumoto M  Hikosaka O 《PloS one》2011,6(10):e26701
The lateral habenula (LHb) is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction) were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction) were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events.  相似文献   

2.
在大鼠尾部给以伤害性刺激后,外侧缰核和中缝大核的单位按其反应型式可分为四种类型,即痛兴奋单位、广动力型单位、痛抑制单位和无反应单位。电刺激下丘脑外侧区对外侧缰核中各种单位的自发放电主要产生抑制作用,对其中痛兴奋单位和痛抑制单位的自发放电尤为明显。刺激下丘脑外侧区对中缝大核中痛兴奋单位的自发放电有明显兴奋作用,刺激外侧缰核则有抑制作用,损毁外侧缰核后,下丘脑外侧区的兴奋作用消失。分别刺激下丘脑外侧区和外侧缰核对中缝大核中痛抑制单位的自发放电都有明显的抑制作用;损毁外侧缰核后下丘脑外侧区的抑制作用仍存在。以上结果提示,下丘脑外侧区影响中缝大核活动的途径有二。其一可能是通过去除外侧缰核对中缝大核中痛兴奋单位的紧张性抑制作用;另外还可能通过外侧缰核以外的途径抑制中缝大核中痛抑制单位的活动。  相似文献   

3.
The lateral habenula (LHb) is a small epithalamic structure that projects via the fasciculus retroflexus to the midbrain. The LHb is known to modulate midbrain dopamine (DA) neurons, including inhibition of ventral tegmental area (VTA) neurons via glutamatergic excitation of the GABAergic rostromedial tegmental nucleus (RMTg). A variety of lines of evidence show activity in LHb and the LHb-RMTg pathway is correlated with, and is sufficient to support, punishment learning. However, it is not immediately clear whether LHb is necessary for punishment. Here we used a within-subjects punishment task to assess the role of LHb in the acquisition and expression of punishment as well as in aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of an AMPA receptor antagonist (NBQX) into LHb had no effect on the acquisition or expression of this punishment, or on aversive choice, but did increase locomotion. Infusion of the sodium channel blocker bupivacaine likewise had no effect on expression of punishment. However, infusion of the calcium channel blocker mibefradil did affect expression of punishment by significantly decreasing the latency with which rats responded on the punished lever and significantly increasing unpunished lever-pressing. Taken together, these findings indicate that the LHb plays a limited role in punishment, influencing only latency to respond. This role is linked to calcium channel permeability and not AMPA receptor or sodium channel permeability.  相似文献   

4.
Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed.  相似文献   

5.
Drosophila mushroom bodies (MB) are bilaterally symmetric multilobed brain structures required for olfactory memory. Previous studies suggested that neurotransmission from MB neurons is only required for memory retrieval. Our unexpected observation that Dorsal Paired Medial (DPM) neurons, which project only to MB neurons, are required during memory storage but not during acquisition or retrieval, led us to revisit the role of MB neurons in memory processing. We show that neurotransmission from the alpha'beta' subset of MB neurons is required to acquire and stabilize aversive and appetitive odor memory, but is dispensable during memory retrieval. In contrast, neurotransmission from MB alphabeta neurons is only required for memory retrieval. These data suggest a dynamic requirement for the different subsets of MB neurons in memory and are consistent with the notion that recurrent activity in an MB alpha'beta' neuron-DPM neuron loop is required to stabilize memories formed in the MB alphabeta neurons.  相似文献   

6.
Shen X  Ruan X  Zhao H 《PloS one》2012,7(4):e34323
Ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) are midbrain structures known to be involved in mediating reward in rodents. Lateral habenula (LHb) is considered as a negative reward source and it is reported that stimulation of the LHb rapidly induces inhibition of firing in midbrain dopamine neurons. Interestingly, the phasic fall in LHb neuronal activity may follow the excitation of dopamine neurons in response to reward-predicting stimuli. The VTA and SNpc give rise to dopaminergic projections that innervate the LHb, which is also known to be involved in processing painful stimuli. But it's unclear what physiological effects these inputs have on habenular function. In this study we distinguished the LHb pain-activated neurons of the Wistar rats and assessed their electrophysiological responsiveness to the stimulation of the VTA and SNpc with either single-pulse stimulation (300 μA, 0.5 Hz) or tetanic stimulation (80 μA, 25 Hz). Single-pulse stimulation that was delivered to either midbrain structure triggered transient inhibition of firing of ~90% of the LHb pain-activated neurons. However, tetanic stimulation of the VTA tended to evoke an elevation in neuronal firing rate. We conclude that LHb pain-activated neurons can receive diverse reward-related signals originating from midbrain dopaminergic structures, and thus participate in the regulation of the brain reward system via both positive and negative feedback mechanisms.  相似文献   

7.
Neuronal signalling of fear memory   总被引:5,自引:0,他引:5  
The learning and remembering of fearful events depends on the integrity of the amygdala, but how are fear memories represented in the activity of amygdala neurons? Here, we review recent electrophysiological studies indicating that neurons in the lateral amygdala encode aversive memories during the acquisition and extinction of Pavlovian fear conditioning. Studies that combine unit recording with brain lesions and pharmacological inactivation provide evidence that the lateral amygdala is a crucial locus of fear memory. Extinction of fear memory reduces associative plasticity in the lateral amygdala and involves the hippocampus and prefrontal cortex. Understanding the signalling of aversive memory by amygdala neurons opens new avenues for research into the neural systems that support fear behaviour.  相似文献   

8.
The opening-duration of the NMDA receptors implements Hebb''s synaptic coincidence-detection and is long thought to be the rate-limiting factor underlying superior memory. Here, we investigate the molecular and genetic determinants of the NMDA receptors by testing the “synaptic coincidence-detection time-duration” hypothesis vs. “GluN2B intracellular signaling domain” hypothesis. Accordingly, we generated a series of GluN2A, GluN2B, and GluN2D chimeric subunit transgenic mice in which C-terminal intracellular domains were systematically swapped and overexpressed in the forebrain excitatory neurons. The data presented in the present study supports the second hypothesis, the “GluN2B intracellular signaling domain” hypothesis. Surprisingly, we found that the voltage-gated channel opening-durations through either GluN2A or GluN2B are sufficient and their temporal differences are marginal. In contrast, the C-terminal intracellular domain of the GluN2B subunit is necessary and sufficient for superior performances in long-term novel object recognition and cued fear memories and superior flexibility in fear extinction. Intriguingly, memory enhancement correlates with enhanced long-term potentiation in the 10–100 Hz range while requiring intact long-term depression capacity at the 1–5 Hz range.  相似文献   

9.
New episodic memories are retained better if learning is followed by a few minutes of wakeful rest than by the encoding of novel external information. Novel encoding is said to interfere with the consolidation of recently acquired episodic memories. Here we report four experiments in which we examined whether autobiographical thinking, i.e. an ‘internal’ memory activity, also interferes with episodic memory consolidation. Participants were presented with three wordlists consisting of common nouns; one list was followed by wakeful rest, one by novel picture encoding and one by autobiographical retrieval/future imagination, cued by concrete sounds. Both novel encoding and autobiographical retrieval/future imagination lowered wordlist retention significantly. Follow-up experiments demonstrated that the interference by our cued autobiographical retrieval/future imagination delay condition could not be accounted for by the sound cues alone or by executive retrieval processes. Moreover, our results demonstrated evidence of a temporal gradient of interference across experiments. Thus, we propose that rich autobiographical retrieval/future imagination hampers the consolidation of recently acquired episodic memories and that such interference is particularly likely in the presence of external concrete cues.  相似文献   

10.
Synaptic responses of neurons in segments C2 and C3 to stimulation of locomotor points in the medulla or midbrain were recorded extracellularly in mesencephalic cats. Neurons generating responses with an index of 0.4–0.6 to stimulation with a frequency of 2 Hz maintained this same index at frequencies of 20–60 Hz. The discharge index of many neurons during stimulation at 2 Hz was low, and it increased to 0.4–0.6 when high-frequency stimulation was used. More than half of the cells were excited by stimulation of both ipsilateral and contralateral locomotor points; one-quarter of the neurons responded to stimulation of locomotor points in both medulla and midbrain. The cells studied were located 1.8–4.2 mm from the dorsal surface of the spinal cord. The mean latencies of responses with an index of not less than 0.5 lay within the range 2–30 msec, with a mode of 2–8 msec. Considerable fluctuations of latent period were observed for long-latency responses. The possibility that the neurons studied may participate in the transmission of activity from the locomotor region of the brain stem to stepping generators in the spinal cord is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 355–361, July–August, 1983.  相似文献   

11.
Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a “traumatic” context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a “traumatic” context. Two groups of healthy volunteers (N = 160) watched either neutral or “traumatic” picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the “traumatic” stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a “traumatic” context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the “traumatic” stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a “traumatic” context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support the idea that administration of cortisol might be an effective treatment strategy in reducing intrusive reexperiencing.  相似文献   

12.
A distinct role for norepinephrine in memory retrieval   总被引:9,自引:0,他引:9  
Murchison CF  Zhang XY  Zhang WP  Ouyang M  Lee A  Thomas SA 《Cell》2004,117(1):131-143
A role for norepinephrine in learning and memory has been elusive and controversial. A longstanding hypothesis states that the adrenergic nervous system mediates enhanced memory consolidation of emotional events. We tested this hypothesis in several learning tasks using mutant mice conditionally lacking norepinephrine and epinephrine, as well as control mice and rats treated with adrenergic receptor agonists and antagonists. We find that adrenergic signaling is critical for the retrieval of intermediate-term contextual and spatial memories, but is not necessary for the retrieval or consolidation of emotional memories in general. The role of norepinephrine in retrieval requires signaling through the beta(1)-adrenergic receptor in the hippocampus. The results demonstrate that mechanisms of memory retrieval can vary over time and can be different from those required for acquisition or consolidation. These findings may be relevant to symptoms in several neuropsychiatric disorders as well as the treatment of cardiac failure with beta blockers.  相似文献   

13.
Sleep benefits veridical memories, resulting in superior recall relative to off-line intervals spent awake. Sleep also increases false memory recall in the Deese-Roediger-McDermott (DRM) paradigm. Given the suggestion that emotional veridical memories are prioritized for consolidation over sleep, here we examined whether emotion modulates sleep’s effect on false memory formation. Participants listened to semantically related word lists lacking a critical lure representing each list’s “gist.” Free recall was tested after 12 hours containing sleep or wake. The Sleep group recalled more studied words than the Wake group but only for emotionally neutral lists. False memories of both negative and neutral critical lures were greater following sleep relative to wake. Morning and Evening control groups (20-minute delay) did not differ ruling out circadian accounts for these differences. These results support the adaptive function of sleep in both promoting the consolidation of veridical declarative memories and in extracting unifying aspects from memory details.  相似文献   

14.
The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.  相似文献   

15.
Conscious memory for a new experience is initially dependent on information stored in both the hippocampus and neocortex. Systems consolidation is the process by which the hippocampus guides the reorganization of the information stored in the neocortex such that it eventually becomes independent of the hippocampus. Early evidence for systems consolidation was provided by studies of retrograde amnesia, which found that damage to the hippocampus-impaired memories formed in the recent past, but typically spared memories formed in the more remote past. Systems consolidation has been found to occur for both episodic and semantic memories and for both spatial and nonspatial memories, although empirical inconsistencies and theoretical disagreements remain about these issues. Recent work has begun to characterize the neural mechanisms that underlie the dialogue between the hippocampus and neocortex (e.g., “neural replay,” which occurs during sharp wave ripple activity). New work has also identified variables, such as the amount of preexisting knowledge, that affect the rate of consolidation. The increasing use of molecular genetic tools (e.g., optogenetics) can be expected to further improve understanding of the neural mechanisms underlying consolidation.Memory consolidation refers to the process by which a temporary, labile memory is transformed into a more stable, long-lasting form. Memory consolidation was first proposed in 1900 (Müller and Pilzecker 1900; Lechner et al. 1999) to account for the phenomenon of retroactive interference in humans, that is, the finding that learned material remains vulnerable to interference for a period of time after learning. Support for consolidation was already available in the facts of retrograde amnesia, especially as outlined in the earlier writings of Ribot (1881). The key observation was that recent memories are more vulnerable to injury or disease than remote memories, and the significance of this finding for consolidation was immediately appreciated.
In normal memory a process of organization is continually going on—a physical process of organization and a psychological process of repetition and association. In order that ideas may become a part of permanent memory, time must elapse for these processes of organization to be completed. (Burnham 1903, p. 132)
It is useful to note that the term consolidation has different contemporary usages that derive from the same historical sources. For example, the term is commonly used to describe events at the synaptic/cellular level (e.g., protein synthesis), which stabilize synaptic plasticity within hours after learning. In contrast, systems consolidation, which is the primary focus of this review, refers to gradual reorganization of the brain systems that support memory, a process that occurs within long-term memory itself (Squire and Alvarez 1995; Dudai and Morris 2000; Dudai 2012).Systems consolidation is typically, and accurately, described as the process by which memories, initially dependent on the hippocampus, are reorganized as time passes. By this process, the hippocampus gradually becomes less important for storage and retrieval, and a more permanent memory develops in distributed regions of the neocortex. The idea is not that memory is literally transferred from the hippocampus to the neocortex, for information is encoded in the neocortex as well as in hippocampus at the time of learning. The idea is that gradual changes in the neocortex, beginning at the time of learning, establish stable long-term memory by increasing the complexity, distribution, and connectivity among multiple cortical regions. Recent findings have enriched this perspective by emphasizing the dynamic nature of long-term memory (Dudai and Morris 2013). Memory is reconstructive and vulnerable to error, as in false remembering (Schacter and Dodson 2001). Also, under some conditions, long-term memory can transiently return to a labile state (and then gradually stabilize), a phenomenon termed reconsolidation (Nader et al. 2000; Sara 2000; Alberini 2005). In addition, the rate of consolidation can be influenced by the amount of prior knowledge that is available about the material to be learned (Tse et al. 2007; van Kesteren et al. 2012).Neurocomputational models of consolidation (McClelland et al. 1995; McClelland 2013) describe how the acquisition of new knowledge might proceed and suggest a purpose for consolidation. As originally described, elements of information are first stored in a fast-learning hippocampal system. This information directs the training of a “slow learning” neocortex, whereby the hippocampus gradually guides the development of connections between the multiple cortical regions that are active at the time of learning and that represent the memory. Training of the neocortex by the hippocampus (termed “interleaved” training) allows new information to be assimilated into neocortical networks with a minimum of interference. In simulations (McClelland et al. 1995), rapid learning of new information, which was inconsistent with prior knowledge, was shown to cause interference and disrupt previously established representations (“catastrophic interference”). The gradual incorporation of information into the neocortex during consolidation avoids this problem. In a recent revision of this framework (McClelland 2013), neocortical learning is characterized, not so much as fast or slow, but as dependent on prior knowledge. If the information to be learned is consistent with prior knowledge, neocortical learning can be more rapid.This review considers several types of evidence that illuminate the nature of the consolidation process: studies of retrograde amnesia in memory-impaired patients, studies of healthy volunteers with neuroimaging, studies of sleep and memory, studies of experimental animals, both with lesions or other interventions, and studies that track neural activity as time passes after learning.  相似文献   

16.
Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus—the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations (“actor” or “politician”). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation—actor or politician—would facilitate or inhibit the subsequent conscious retrieval of a celebrity’s occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity’s occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This finding supports the notion of synergistic interactions between conscious and unconscious relational memories in a common, cohesive hippocampal-neocortical memory space.  相似文献   

17.
Avoidance behavior is a critical component of many psychiatric disorders, and as such, it is important to understand how avoidance behavior arises, and whether it can be modified. In this study, we used empirical and computational methods to assess the role of informational feedback and ambiguous outcome in avoidance behavior. We adapted a computer-based probabilistic classification learning task, which includes positive, negative and no-feedback outcomes; the latter outcome is ambiguous as it might signal either a successful outcome (missed punishment) or a failure (missed reward). Prior work with this task suggested that most healthy subjects viewed the no-feedback outcome as strongly positive. Interestingly, in a later version of the classification task, when healthy subjects were allowed to opt out of (i.e. avoid) responding, some subjects (“avoiders”) reliably avoided trials where there was a risk of punishment, but other subjects (“non-avoiders”) never made any avoidance responses at all. One possible interpretation is that the “non-avoiders” valued the no-feedback outcome so positively on punishment-based trials that they had little incentive to avoid. Another possible interpretation is that the outcome of an avoided trial is unspecified and that lack of information is aversive, decreasing subjects’ tendency to avoid. To examine these ideas, we here tested healthy young adults on versions of the task where avoidance responses either did or did not generate informational feedback about the optimal response. Results showed that provision of informational feedback decreased avoidance responses and also decreased categorization performance, without significantly affecting the percentage of subjects classified as “avoiders.” To better understand these results, we used a modified Q-learning model to fit individual subject data. Simulation results suggest that subjects in the feedback condition adjusted their behavior faster following better-than-expected outcomes, compared to subjects in the no-feedback condition. Additionally, in both task conditions, “avoiders” adjusted their behavior faster following worse-than-expected outcomes, and treated the ambiguous no-feedback outcome as less rewarding, compared to non-avoiders. Together, results shed light on the important role of ambiguous and informative feedback in avoidance behavior.  相似文献   

18.
Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages.  相似文献   

19.
Pobbe RL  Zangrossi H 《Life sciences》2008,82(25-26):1256-1261
Recently obtained evidence points to the involvement of the lateral habenular nuclei (LHb) in the mediation of coping defensive responses to threatening/stressful stimuli. Nevertheless, the role of this brain area in the regulation of defensive responses that have been associated with specific subtypes of anxiety disorders recognized in clinical settings is presently unknown. To address this question, we investigated the effects of either electrolytic lesions or chemical stimulation of the LHb on the defensive behaviors generated in rats by the elevated T-maze. This experimental model allows the measurement, in a same rat, of two defensive behaviors, inhibitory avoidance and escape, that have been related in terms of psychopathology to generalized anxiety and panic disorders, respectively. Bilateral electrolytic lesions of the LHb (1 mA, 10 s) impaired inhibitory avoidance acquisition and facilitated escape performance. On the other hand, chemical stimulation of the LHb by bilateral microinjection of kainic acid (30-60 pmol/0.2 microL) had the opposite effect, i.e., facilitated inhibitory avoidance and impaired escape. The present results indicate that the LHb exerts an opposed regulatory control on generalized anxiety- and panic-related defensive responses in rats.  相似文献   

20.
Sleep, specifically non-rapid eye movement (NREM) sleep, is thought to play a critical role in the consolidation of recent memories. Two main oscillatory activities observed during NREM, cortical slow oscillations (SO, 0.5–1.0Hz) and thalamic spindles (12–15Hz), have been shown to independently correlate with memory improvement. Yet, it is not known how these thalamocortical events interact, or the significance of this interaction, during the consolidation process. Here, we found that systemic administration of the GABAergic drug (zolpidem) increased both the phase-amplitude coupling between SO and spindles, and verbal memory improvement in humans. These results suggest that thalamic spindles that occur during transitions to the cortical SO Up state are optimal for memory consolidation. Our study predicts that the timely interactions between cortical and thalamic events during consolidation, contribute to memory improvement and is mediated by the level of inhibitory neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号