首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

2.
G. Laskay  E. Lehoczki  A. L. Dobi  L. Szalay 《Planta》1986,169(1):123-129
The effects of the pyridazinone compound SAN 9785 on the photosynthetic competence of leaves, on the photochemical activity of isolated thylakoids and on the formation and spectral properties of chlorophyll-protein complexes were studied during a 72-h greening period of detached etiolated leaves of barley (Hordeum vulgare L. cv. Horpácsi kétsoros). It was established that i) the photosynthetic capacity of the leaves decreased considerably (by 80 and 90%, as determined by14CO2 fixation and fast fluorescence induction measurements, respectively); ii) the photochemical activity of isolated thylakoids from water to potassium ferricyanide and from dichlorophenol indophenol/ascorbate to methylviologen exhibited only slight reductions when expressed on a chlorophyll basis compared with the control; iii) the slow fluorescence induction curves of the treated leaves demonstrated the presence of a peculiar fluorescence component interrupting the quenching of fluorescence at around 1 min illumination; iv) a shortage of the chlorophyll-protein complex of photosystem I (CPI) occurred with a higher content of the monomer of the light harvesting complex in the thylakoids of treated leaves; and v) the fluorescence spectrum of the CPI band present in treated leaves indicates the destruction of the structural integrity of this complex during isolation from the membrane.Abbreviations Chl chlorophyll - CPI, CPII chlorophyll-protein complexes of the reaction centres of PSI and PSII - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPIP 2,6-dichlorophenol indophenol - DPIPH2 chemically reduced form of DPIP - F o fluorescence of constant yield - F v fluorescence of variable yield - F i ,F m mitial and maximum yield of fluorescence - LHCP3 monomer of the light-harvesting complex - LHCP2 and LHCP1 oligomers of the light-harvesting complex LHCP3 - PSI, PSII photosystems I, II - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone, also known as BASF 13-338 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

3.
The effect of cadmium on the formation of the photosynthetic apparatus of greening barley (Hordeum vulgare L. cv. Triangel) leaves has been investigated. Cadmium treatment of dark-grown leaves strongly reduced the extent of chlorophyll accumulation during greening. Low-temperature fluorescence emission showed, however, that neither the synthesis nor photoconversion of protochlorophyllide was inhibited, although a blue shift of the main fluorescence emission from 685 to 668 mm was found. Chlorophyll fluorescence lifetime was followed by measuring the phase-shift angle of modulated emission. Whereas this parameter normally decreases rapidly during greening, this change proceeded noticeably slower with increasing severity according to cadmium concentration. Cadmium also decreased the variable part of fluorescence induction. These results suggest that the cadmium in greening leaves, rather than interfering with chlorophyll biosynthesis, acts mainly by disturbing the integration of chlorophyll molecules into the stable complexes required for normal functional photoysnthetic activity.  相似文献   

4.
The amplitudes ratio of the fast and slow phases (Afast/Aslow) in the kinetics of the dark relaxation of variable chlorophyll fluorescence (FV) was studied after various periods of illumination of dark-adapted primary barley leaves. Simultaneously, photosynthetic activity was monitored using the photoacoustic technique and the photochemical and non-photochemical fluorescence quenching parameters. The ratio Afast/Aslow changed with the preceding illumination time in a two-step manner. During the first stage of photosynthetic induction (0–20 s of illumination), characterized by a drop in O2-dependent photoacoustic signal following an initial spike and by a relatively stable small value of photochemical FV quenching, the ratio Afast/Aslow remained practically unaltered. During the second stage (20–60 s of illumination), when both the rate of O2 evolution and the photochemical FV quenching were found to be sharply developed, a marked increase in the above ratio was also observed. A linear correlation was found between the value of the photochemical quenching and the ratio Afast/Aslow during the second phase of photosynthetic induction. It is concluded that the slow phase appearing in the kinetics of FV dark relaxation is not due to the existence of Photosystem II reaction centres lacking the ability to reduce P700+ with high rates, but is instead related to the limitation of electron release from Photosystem I during the initial stage of the induction period of photosynthesis. This limitation keeps the intersystem electron carriers in the reduced state and thus increases the probability of back electron transfer from QA to the donor side of Photosystem II.Abbreviations Afast/Aslow the ratio of magnitudes between the fast and slow phases of dark relaxation of variable fluorescence - FO initial level of chlorophyll fluorescence - FV variable chlorophyll fluorescence (F-FO) - (FV)S the yield of variable chlorophyll fluorescence under saturating pulse in illuminated leaves - (FV)M the yield of variable chlorophyll fluorescence under saturating pulse in dark-adapted leaves - PA photoacoustic - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching - qQ photochemical quenching  相似文献   

5.
The red laser-induced chlorophyll-fluorescence induction kinetics of predarkened leaf samples were registered simultaneously in the 690 and 730 nm regions i.e., in the region of the two chlorophyll fluorescence emission maxima. From the induction kinetics the chlorophyll fluorescence ratio F690/F730 was calculated. The ratio F690/F730 shows to be dependent on the chlorophyll content of leaves. It is significantly higher in needles of damaged spruces (values of 0.45–0.9) than in normal green needles of healthy trees (values of 0.35–0.5). During development and greening of maple leaves the ratio F690/F730 decreases with increasing chlorophyll content. Determination of the ratio F690/F730 can be a suitable method of monitoring changes in chlorophyll content in a non-destructive way in the same leaves during development or the yellowish-green discolouration of needles of damaged spruces in the Black Forest with the typical tree decline symptoms.Abbreviations F690/F730 ratio of the fluorescence yield at the two fluorescence-emission maxima in the 690 and 730 nm regions - Fm maximum fluorescence - Fs steady-state fluorescence  相似文献   

6.
Detached leaves of 14 day-old dark-grown pea seedlings were immersed with their cut ends either in water (control) or in 20 mM Pb(NO3)2 solution. They were exposed to continuous illumination during 24 and 48 h. The formation of PSII primary photochemistry in thylakoids was determined in vivo by measuring changes in values of parameters of chlorophyll a fast fluorescence kinetics: Fo, Fm, Fv, Fv/Fm and t 1/2. The amount of lead accumulation in leaves, content of chlorophylls and carotenoids and rates of CO2 uptake in light and evolution in darkness (Pn-net photosynthesis and DR - dark respiration respectively) were determined. It has been found that with the exception of Fo, values of Fv, Fm and Fv/Fm were reduced by Pb2+. The values of t 1/2 were significantly larger in Pb2+ treated leaves. Decrease in the chlorophyll a fluorescence parameters was paralleled with the strong inhibition by this metal the biosynthesis of chlorophyll a and b but less of the carotenoids. Pb2+ drastically reduced Pn but had a stimulatory action on DR after 24 h and small inhibition of DR after 48 h exposure of leaves to this metal. As a consequence, after 48 h of greening the ratio of DR/Pn of control leaves was 0.45 whereas in Pb2+ treated leaves 2.7. It is proposed that DR in leaves plays a protective role against damage of Pn by Pb2+. Protection can be due to the supply the respiratory derived reductant and ATP to carry out cell metabolism upon reduced photosynthesis.  相似文献   

7.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

8.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   

9.
The temperature dependence of the rate of de-epoxidation of violaxanthin to zeaxanthin was determined in leaves of chilling-sensitive Gossypium hirsutum L. (cotton) and chilling-resistant Malva parviflora L. by measurements of the increase in absorbance at 505 nm (A 505) and in the contents of antheraxanthin and zeaxanthin that occur upon exposure of predarkened leaves to excessive light. A linear relationship between A 505 and the decrease in the epoxidation state of the xanthophyll-cycle pigment pool was obtained over the range 10–40° C. The maximal rate of de-epoxidation was strongly temperature dependent; Q10 measured around the temperature at which the leaf had developed was 2.1–2.3 in both species. In field-grown Malva the rate of de-epoxidation at any given measurement temperature was two to three times higher in leaves developed at a relatively low temperature in the early spring than in those developed in summer. Q10 measured around 15° C was in the range 2.2–2.6 in both kinds of Malva leaves, whereas it was as high as 4.6 in cotton leaves developed at a daytime temperature of 30° C. Whereas the maximum (initial) rate of de-epoxidation showed a strong decrease with decreased temperature the degree of de-epoxidation reached in cotton leaves after a 1–2 · h exposure to a constant photon flux density increased with decreased temperature as the rate of photosynthesis decrease. The zeaxanthin content rose from 2 mmol · (mol chlorophyll)–1 at 30° C to 61 mmol · (mol Chl)–1 at 10° C, corresponding to a de-epoxidation of 70% of the violaxanthin pool at 10° C. The degree of de-epoxidation at each temperature was clearly related to the amount of excessive light present at that temperature. The relationship between non-photochemical quenching of chlorophyll fluorescence and zeaxanthin formation at different temperatures was determined for both untreated control leaves and for leaves in which zeaxanthin formation was prevented by dithiothreitol treatment. The rate of development of that portion of non-photochemical quenching which was inhibited by dithiothreitol decreased with decreasing temperature and was linearly related to the rate of zeaxanthin formation over a wide temperature range. In contrast, the rate of development of the dithiothreitol-resistant portion of non-photochemical quenching was remarkably little affected by temperature. Evidently, the kinetics of the development of non-photochemical quenching upon exposure of leaves to excessive light is therefore in large part determined by the rate of zeaxanthin formation. For reasons that remain to be determined the relaxation of dithiothreitolsensitive quenching that is normally observed upon darkening of illuminated leaves was strongly inhibited at low temperatures.Abbreviations and Symbols Chl chlorophyll - DTT dithiothreitol - EPS epoxidation state - NPQ non-photochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - F, Fm fluorescence emission at the actual, full closure of the PSII centers C.I.W.-D.P.B. Publication No. 1092We thank Connie Shih for skillful assistance in growing the plants, for conducting the HPLC analyses, and for preparing the figures. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W.B. is gratefully acknowledged. This work was supported by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B.  相似文献   

10.
Summary A new device for the measurement of complete laser induced fluorescence emission spectra (maxima near 690 and 735 nm) of leaves during the induction of the chlorophyll fluorescence is described. In this the excitation light (cw He/Ne laser, 632.8 nm) is switched on by a fast electro-mechanical shutter which provides an opening time of 1 ms. The emitted fluorescence is imaged onto the entrance slit of a multichannel spectrograph through a red cut-off filter (> 645 nm). A charge coupled device (CCD) sensor with 2048 elements simultaneously detects the complete chlorophyll fluorescence emission spectrum in the 650–800 nm wavelength range. Scanning is accomplished electronically and the integration time for a complete fluorescence emission spectrum can be selected from 10 ms up to 260 ms. Shutter, detector system and data acquisition are controlled by an IBM-PC/AT compatible computer. A maximum of 32 spectra can be measured at selected times during the fluorescence induction kinetics with the shortest time resolution of 10 ms. The instrument permits the determination of various fluorescence parameters:a) the rise-time of the fluorescence to the maximum level fm,b) the changes in the shape of the fluorescence emission spectra during the induction kinetics,c) the induction kinetics in the fluorescence ratio F690/F735 as well asd) the fluorescence decrease ratio Rfd at any wavelength between 650 to 800 nm. These fluorescence parameters provide information about the functioning of photosynthesis. The ratio F690/F735 allows the non-destructive determination of the chlorophyll content of leaves. The application of this instrument in ecophysiological research and stress physiology of plants is outlined.  相似文献   

11.
The effect of lincocin (a plastid protein synthesis inhibitor) treatment on the greening process of bean (Phaseolus vulgaris L.) leaves have been studied. In comparison with control leaves treated ones had a decreased rate of chloroplast development. They had a marked chlorophyll deficiency and a decreased chlorophyll a/b ratio. Some long and short wavelength forms of chlorophyll a were lacking as evidenced from the absorption spectra at 25°C and the fluorescence spectra at 77°K. The –14CO2 fixation was inhibited by 80–90% in treated leaves. The fluorescence induced by the measuring light was greater in the treated leaves than in the control ones, and the kinetics of the decline of the relative fluorescence intensity were also different. Electron microscopic studies showed macrogranum-like structures and incomplete membrane vesicles in the treated plastids. After longer treatment a destruction of membranes was observed. The results indicate some structural and functional membrane deficiencies and instability of the membranes.  相似文献   

12.
Waloszek  A.  Więckowski  S.  Planner  A.  Boguta  A.  Frąckowiak  D. 《Photosynthetica》2002,40(2):279-288
The character of interaction between carotenoids (Cars) and chlorophylls (Chls) in thylakoids isolated from cucumber cotyledons at three stages of greening (3, 6, and 24 h of irradiation with 120 µmol m–2 s–1) was studied. The shapes of the steady state photoacoustic spectra were changed with the change in time of greening and with the frequency of radiation modulation. The shapes show that changes not only in the contents of various pigments but also in pigment interactions with surrounding occur and that processes of thermal deactivation characterised by different kinetics take place. Slow processes of thermal deactivation are in most cases due to deactivation of triplet states. Long living triplet states are very often engaged in photochemical reactions that can destroy the tissue. Analysis of the time-resolved photothermal spectra shows that at later stage of greening, the chlorophyll (Chl) molecules are better shielded against photo-destruction because Cars more efficiently quench their triplet states. The yield of formation of the pigment triplet states measured by the time resolved photothermal method, always at the same energy absorbed by pigment mixture, declined during sample greening. The decay time of the slow component of pigment thermal deactivation, due predominantly to deactivation of the triplet state of Chl, decreases with the increase of time of greening from 6.2 µs for the 3-h sample to 1.5 µs for the 24 h sample. The energy taken by Cars from Chls is dissipated into heat, therefore the steady state and quick thermal deactivation values increased during the greening process. The Cars/Chls ratio in the thylakoids decreased during greening approximately 2 fold. Hence at a later phase of greening the Cars can quench the triplet states of Chls more efficiently than at an earlier phase of greening.  相似文献   

13.
The rate of accumulation of total chlorophyll (Chl) and carotenoids (Car) of leaves grown under high irradiance, HI (30 and 45 W m–2) was faster than at moderate irradiance, MI (15 W m–2). However, the senescence phase started earlier in the samples and proceeded at a faster rate. Chl a/b and Chl (a+b)/Car values showed faster loss of Chl a (compared to Chl b) and Chl (a+b) (compared to Car) in HI leaves. Protein accumulation and loss were also similar to that of Chl (a+b) content. Increase in Chl fluorescence during the development phase may suggest a gradual change in thylakoid organisation, however, the temporal kinetics were different in HI and MI samples. Increase in fluorescence polarisation during senescence of HI leaves compared to the control (MI) suggests conversion of thylakoid membranes to gel phase. Chloroplasts prepared from HI seedlings showed higher rate of photochemical activities, however, the activity declined earlier and at faster rate compared to the control.  相似文献   

14.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc rate of CO2 fixation - F680 fluorescence emission at 680 nm  相似文献   

15.
The fluorescence of the chlorophyll associated with photosystem II was studied in seedling and flag leaves of Triticum species. Seedling leaves of the diploid species T. urartu had higher values of t (the normalised area over the fluorescence induction curve of DCMU treated leaves) than those of the other species studied which included hexaploid T. aestivum. However this difference was not evident when leaves were grown in a low light intensity (40 µmol quanta of photosynthetically active radiation m–2 s–1). The smaller total number of chlorophyll molecules per photosystem II reaction centre (chl/RCII) in T. urartu (177) as compared with the other species (mean 234) was deduced from the observed differences in t. As a consequence of its lower chl/RCII, despite slightly lower chlorophyll content (mg m–2), T. urartu had a greater density of reaction centres than the other species (2880 cf 2230 nmol m–2 of leaf). Consistent with the lower chl/RCII of T. urartu, it had a higher chlorophyll a/b ratio than the other genotypes. Seedling leaves of T. urartu had higher light saturated rates of photosynthesis than those of the other species, when grown at high light, a difference associated with reaction centre density.In flag leaves, when the complications due to variable development and senescence patterns were eliminated, t of the diploid species including T. urartu was lower than that of T. aestivum. The lower apparent chl/RCII of T. urartu arose partly because the molar extinction coefficient of the chlorophyll in the leaves of T. urartu was greater than in T. aestivum. However, the density of PS II reaction centres was slightly lower for the diploid species studied because their chlorophyll contents were lower than the hexaploids.The validity of the method for estimating chl/RCII from fluorescence transients is discussed. The possibility is considered that the difference in apparent chl/RCII of flag and seedling leaves of R. urartu as compared to the other five genotypes is a consequence of its different adaptive response to the spectral quality of the light.  相似文献   

16.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves (Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m–2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P 700 + (oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B1 and B2 fraction of closed PSI and PSII reaction centers, respectively - ES photoacoustically measured energy storage - Fo, Fm and Fs initial, maximal and steady-state levels of chlorophyll fluorescence - P700 reaction center of PSI - PS (I, II) photosystem (I, II) - V = (Fs – Fo)/(Fm – Fo) relative variable chlorophyll fluorescence We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help.  相似文献   

17.
The influence of mono- (K+) and divalent (Mg2+) cations and protons (pH) on the temperature sensitivity of thylakoid membranes was investigated in three groups of young bean plants (control, heat-acclimated and non-acclimated). Thylakoid-membrane function was monitored by second and millisecond delayed fluorescence and 9-aminoacridine fluorescence quenching. It was established that metal ions at investigated concentrations decreased the thermostability of the photosynthetic parameters — an increase of MgSO4 concentration from 0.1 to 20 mM decreased the temperature of their half-inactivation (T50) by 13°C. At the same time the pH dependence of the thermal stability of these parameters showed a maximum at pH 5.5–6.5. The half-inactivation temperatures of those photosynthetic parameters connected with the ability of the thylakoid membrane to form light-induced proton gradients increased by 6–7°C in the heat-acclimated plants compared with the control. It was assumed that the temperature inactivation of photosynthetic electron transfer and the energization of the thylakoid membrane was determined both by the thermoinduced dissociation of the light-harvesting chlorophyll a/b protein complex from PSII, leading to destruction of the excitation energy transfer to the reaction centres, and by the thermal denaturation of the membrane-protein components. The rate of these processes was probably controlled by the size of the negative surface charge and the viscosity of the thylakoid membrane.Abbreviations 9-AA 9-aminoacridine - DF delayed fluorescence - LHCP light-harvesting chlorophyll a/b protein complex - PSI (II) photosystem I (II) - T50 temperature of 50% inhibition of photosynthetic parameter - Tricine N-[2-hydroxy-1, 1-bis(hydroxymethyl)ethyl] glycine  相似文献   

18.
The photosynthetic response to light can be accurately defined in terms of (1) the initial slope (quantum yield); (2) the asymptote (light-saturated rate); (3) the convexity (rate of bending); and (4) the intercept (dark respiration). The effects of photoinhibition [which damages the reaction centre of photosystem II (PSII)] on these four parameters were measured in optically thin cultures of green plant cells (Chlamydomonas reinhardtii). The convexity of the light-response curve decreased steadily from a value of 0.98 (indicating a sharply bending response) to zero (indicating Michaelis-Menten kinetics) in response to increasing photoinhibition. Photoinhibition was quantified from the quantum yield of inhibited cells relative to that of control cells. The quantum yield was estimated by applying linear regression to low-light data or by fitting a non-rectangular hyperbola. Assuming the initial slope is linear allowed comparison with earlier work. However, as the convexity was lowered this assumption resulted in a significant underestimate of the true quantum yield. Thus, the apparent level of photoinhibition required for a zero convexity and the initial decrease in light-saturated photosynthesis depended upon how the quantum yield was estimated. If the initial slope of the light response was assumed to be linear the critical level of inhibition was 60%. If the linear assumption was not made, the critical level was 40%. At the level of inhibition where the convexity reached zero, the light-saturated rate of photosynthesis also began to decrease, indicating that this level of inhibition caused photosynthesis to be limited at all light intensities by the rate of PSII electron transport. At this level of inhibition the Fm-Fi signal (where Fm is maximal chlorophyll fluorescence and Fi is intermediate chlorophyll fluorescence of dark adapted cells; Briantais et al. 1988) from the fluorescence induction curve was zero and the Fi-Fo signal (where Fo is initial chlorophyll fluorescence of dark adapted cells) was 30% of the control, indicating dramatic reduction or complete elimination of one type of PSII. These data do not contradict published mathematical models showing that the ratio of the maximum speed of electron transport in PSII relative to the maximum speed of plastoquinone electron transport can determine the convexity of the photosynthetic response to light.Abbreviations and Symbols Chl chlorophyll content - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fo, Fi, Fm initial, intermediate, and maximal Chl fluorescence of dark adapted cells - P rate of net photosynthesis per unit chlorophyll (mol-(mg Chl)–1 · s–1) - PSII photosystem II - PQ plastoquinone - initial slope to the light-response curve - convexity (rate of bending) of the light-response curve of photosynthesis - Q photosynthetically active photon flux density (400–700 nm, mol · m–2 · –1) The present investigation was supported by the Swedish Council for Forestry and Agricultural Research, the Swedish Environmental Protection Board, and the Swedish Natural Science Research Council. We thank Dr. Deborah D. Kaska (Department of Biological Sciences, University of California, Santa Barbara, Calif., USA) for giving us Chlamydomonas algae. We thank Professor G. Öquist (Department of Plant Physiology, University of Umea, Umea, Sweden) for his encouragement, valuable comments and discussion.  相似文献   

19.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
To determine the dependence of in vivo photosystem (PS) II function on photon exposure and to assign the relative importance of some photoprotective strategies of PSII against excess light, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII complexes (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum satlvum L.) grown in moderate light. The modulation of PSII functionality in vivo was induced by varying either the duration (from 0 to 3 h) of light treatment (fixed at 1200 or 1800 mol photons · m-2 · s-1) or irradiance (from 0 to 3000 mol photons · m-2 · s-1) at a fixed duration (1 h) after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), nigericin (an uncoupler), or dithiothreitol (an inhibitor of the xanthophyll cycle) through the cut petioles of leaves of 22 to 24-day-old plants. We observed a reciprocity of irradiance and duration of illumination for PSII function, demonstrating that inactivation of functional PSII depends on the total number of photons absorbed, not on the rate of photon absorption. The Fv/Fm ratios from photoinhibitory light-treated leaves, with or without inhibitors, declined pseudo-linearly with photon exposure. The number of functional PSII complexes declined multiphasically with increasing photon exposure, in the following decreasing order of inhibitor effect: lincomycin > nigericin > DTT, indicating the central role of D1 protein turnover. While functional PSII and Fv/Fm ratio showed a linear relationship under high photon exposure conditions, in inhibitor-treated leaves the Fv/Fm ratio failed to reveal the loss of up to 25% of the total functional PSII under low photon exposure. The loss of this 25% of less-stable functional PSII was accompanied by a decrease of excitation-energy trapping capacity at the reaction centre of PSII (revealed by the fluorescence parameter, 1/Fo-1/Fm, where Fo and Fm stand for chlorophyll fluorescence when PSII reaction centres are open and closed, respectively), but not by a loss of excitation energy at the antenna (revealed by the fluorescence parameter, 1/Fm). We conclude that (i) PSII is an intrinsic photon counter under photoinhibitory conditions, (ii) PSII functionality is mainly regulated by D1 protein turnover, and to a lesser extent, by events mediated via the transthylakoid pH gradient, and (iii) peas exhibit PSII heterogeneity in terms of functional stability during photon exposure.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - Fs, Fm steady-state and maximum fluorescence during illumination, respectively - P680 reactioncentre chlorophyll and primary electron donor of PSII - PS photosystem Financial support of this work by Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号