首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well documented that estrogen can activate rapid signaling pathways in a variety of cell types. These non-classical effects of estrogen have been reported to be important for cell survival after exposure to a variety of neurotoxic insults. Since direct evidence of the ability of the estrogen receptors (ERs) alpha and/or beta to mediate such responses is lacking, the hippocampal-derived cell line HT22 was stably transfected with either ERalpha (HTERalpha) or ERbeta (HTERbeta). In HTERalpha and HTERbeta cells, but not untransfected cells, an increase in ERK2 phosphorylation was measured within 15 min of 17beta-estradiol treatment. The ER antagonist ICI 182, 780 (1 microm) and the MEK inhibitor, PD98059 (50 microm) blocked this increase in ERK2 phosphorylation. Treatment of HT22, HTERalpha and HTERbeta cells with the beta-amyloid peptide (25-35) (10 micro m) resulted in a significant decrease in cell viability. Pre-treatment for 15 min with 10 nm 17beta-estradiol resulted in a 50% increase in the number of living cells in HTERalpha and HTERbeta cells, but not in HT22 cells. Finally, ICI 182, 780 and PD98059 prevented 17beta-estradiol-mediated protection. This study demonstrates that both ERalpha and ERbeta can couple to rapid signaling events that mediate estrogen-elicited neuroprotection.  相似文献   

2.
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.  相似文献   

3.
4.
We have investigated the molecular mechanisms of neurotrophin-mediated cell survival in HT22 cells, a murine cell line of hippocampal origin, expressing the brain-derived neurotrophic factor (BDNF) receptor TrkB as well as the TrkB.T1 splice variant. Stimulation with BDNF protected HT22-TrkB cells, but not HT22-TrkB.T1 cells, against programmed cell death induced by serum deprivation. BDNF did not, however, provide protection against oxidative glutamate toxicity, indicating that serum deprivation-induced cell death differs substantially from glutamate-induced cell death. Using a pharmacological strategy to block either the extracellular signal-regulated protein kinase (ERK) or the phosphatidylinositol 3-kinase (PI3) pathway, we show that activation of PI3 kinase is required for the neuroprotective activity of BDNF in HT22 cells. To further analyse the role of ERK in neuroprotection we expressed an inducible deltaRaf-1:ER fusion protein in HT22 cells. Activation of this conditionally active form of Raf-1 induced a sustained phosphorylation of ERK, and protected the cells from serum withdrawal-induced cell death. Inhibition of ERK activation at different time points revealed that a prolonged activation of ERK is essential to protect HT22 cells from cell death triggered by the withdrawal of serum, indicating that the duration of ERK activation is of major importance for its neuroprotective biological function.  相似文献   

5.
6.
7.
8.
Neuroprotective effects have been described for many cannabinoids in several neurotoxicity models. However, the exact mechanisms have not been clearly understood yet. In the present study, antioxidant neuroprotective effects of cannabinoids and the involvement of the cannabinoid receptor 1 (CB1) were analysed in detail employing cell-free biochemical assays and cultured cells. As it was reported for oestrogens that the phenolic group is a lead structure for antioxidant neuroprotective effects, eight compounds were classified into three groups. Group A: phenolic compounds that do not bind to CB1. Group B: non-phenolic compounds that bind to CB1. Group C: phenolic compounds that bind to CB1. In the biochemical assays employed, a requirement of the phenolic lead structure for antioxidant activity was shown. The effects paralleled the protective potential of group A and C compounds against oxidative neuronal cell death using the mouse hippocampal HT22 cell line and rat primary cerebellar cell cultures. To elucidate the role of CB1 in neuroprotection, we established stably transfected HT22 cells containing CB1 and compared the protective potential of cannabinoids with that observed in the control transfected HT22 cell line. Furthermore, oxidative stress experiments were performed in cultured cerebellar granule cells, which were derived either from CB1 knock-out mice or from control wild-type littermates. The results strongly suggest that CB1 is not involved in the cellular antioxidant neuroprotective effects of cannabinoids.  相似文献   

9.
Although estrogens are neuroprotective in a variety of neuroprotection models, the precise underlying mechanisms are currently not well understood. Here, we examined the role of protein kinase C (PKC) in mediating estrogen-induced neuroprotection in the HT-22 immortalized hippocampal cell line. The neuroprotection model utilized calcein fluorescence to quantitate cell viability following glutamate insults. 17beta-Estradiol (betaE2) protected HT-22 cells when treatment was initiated before or after the glutamate insult. The inhibition of PKC by bis-indolylmaleimide mimicked and enhanced betaE2-induced neuroprotection. In contrast, the inhibition of specific PKC isozymes (alpha and beta) by Go6976, inhibition of 1-phosphatidylinositol 3 kinase by wortmannin, or inhibition of protein kinase A by H-89, did not alter cell viability, suggesting a specific involvement of PKC in an isozyme-dependent manner. We further examined whether estrogen interacts with PKC in a PKC isozyme-specific manner. Protein levels and activity of PKC isozymes (alpha, delta, epsilon, and zeta) were assessed by western blot analysis and radiolabeled phosphorylation assays respectively. Among the isozymes tested, betaE2 altered only PKCepsilon; it reduced the activity and membrane translocation of PKCepsilon in a manner that correlated with its protection against glutamate toxicity. Furthermore, betaE2 reversed the increased activity of membrane PKCepsilon induced by glutamate. These data suggest that the neuroprotective effects of estrogens are mediated in part by inhibition of PKCepsilon activity and membrane translocation.  相似文献   

10.
Estrogens affect the development, maturation, and function of multiple organ systems, including the immune system. One of the main targets of estrogens in the immune system is the thymus, which undergoes atrophy and phenotypic alterations when exposed to elevated levels of estrogen. To determine how estrogens influence the thymus and affect T cell development, estrogen receptor alpha (ERalpha) knockout (ERKO) mice were examined. ERKO mice have significantly smaller thymi than their wild-type (WT) littermates. Construction of ER radiation bone marrow chimeras indicated that the smaller thymi were due to a lack of ERalpha in radiation-resistant tissues rather than hemopoietic elements. ERKO mice were also susceptible to estradiol-induced thymic atrophy, but the extent of their atrophy was less than what was seen in WT mice. The estradiol-treated ERKO mice failed, however, to manifest alterations in their thymic CD4/CD8 phenotypes compared with WT mice. Therefore, ERalpha is essential in nonhemopoietic cells to obtain a full-sized thymus, and ERalpha also mediates some of the response of the thymus to elevated estrogen levels. Finally, these results suggest that in addition to ERalpha, another receptor pathway is involved in estradiol-induced thymic atrophy.  相似文献   

11.
During pregnancy, changes in circulating levels of hormones, including estrogens, correlates with a significant decrease in the relapse incidence in women with Multiple Sclerosis (MS). In the present study, we demonstrate that both primary and cell line cultures of rat oligodendrocytes express the estrogen receptor (ER)-alpha and ERbeta estrogen receptors in the cytosol and nucleus, and that nuclear compartmentalization becomes more pronounced as the cells mature. Moreover, 17beta-estradiol significantly decreases the cytotoxic effects of the peroxynitrite generator 3-(4-morpholinyl)-sydnonimine (SIN-1) in both immature and mature oligodendrocytes in a dose dependent manner. This protective mechanism requires pretreatment with 17beta-estradiol and is blocked by ICI 182,780, a selective ERalpha/ERbeta antagonist. These results strongly suggest that 17beta-estradiol protects oligodendrocytes against SIN-1 mediated cytotoxicity through the activation of the estrogen receptors and provides new insights into the roles of the estrogen signaling pathways in myelin forming cells that are lost in demyelinating disorders.  相似文献   

12.
13.
To identify estrogen-responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERalpha interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERalpha was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells.  相似文献   

14.
15.
In the present work using an established clonal mouse hippocampal (HT-22) cell line, we have examined whether the estrogen antagonist tamoxifen antagonizes the observed neuroprotective effects of estrogen against glutamate and amyloid beta protein neurotoxicity. Results obtained suggest that like estrogen, tamoxifen protects HT-22 cells against both 5mM glutamate and 2 microM amyloid beta protein induced cell death in a concentration dependent manner. Optimum protection was obtained at 500 nM tamoxifen. Tamoxifen was found to offer more potent protection at this dose against amyloid beta protein induced neurotoxicity when compared with glutamate neurotoxicity. We were unable to detect either estrogen receptor (ER)--ER alpha or ER beta presence in HT-22 cells using western blot technique. However, amyloid beta protein treatment significantly increases total glucocorticoid receptors (GRs) as determined by western blot technique, while prior treatment with estrogen or tamoxifen followed by amyloid beta protein resulted in the reduction of total GRs to the levels comparable to that observed for the control untreated cells. In addition, using confocal immunoflourescence microscopy technique, we observed that 20 h of treatment with 2 microM amyloid beta protein resulted in enhanced nuclear localization of GRs in HT-22 cells as compared to control untreated cells or 500 nM tamoxifen alone treated cells. Interestingly, 500 nM tamoxifen treatments for 24h, followed by 20 h treatment with 2 microM amyloid beta protein resulted in dramatic reduction in GRs nuclear localization. In conclusion, tamoxifen (i) protects HT-22 cells against amyloid beta protein neurotoxicity and (ii) neuroprotective effect is independent of ERs.  相似文献   

16.
17.
The gene coding for the human wild-type estrogen receptor (ER) was stably transfected into the human fetal osteoblastic cell line hFOB 1.19, a clonal cell line which is conditionally immortilized with a temperature sensitive mutant of SV40 large T antigen (tsA58). Five subclones were obtained which express various levels of ER mRNA and protein. The subclone with the highest level of functional (nuclear bound) ER, hFOB/ER9, contained 3,931 (±1,341) 17β-estradiol molecules bound/nucleus as determined by the nuclear binding (NB) assay. Using the dextran coated charcoal (DCC) method, the level of total cytosolic ER measured was 204 (±2) fmol/mg protein. This subclone was examined further for estradiol (E2) responsiveness. The ER expressed in hFOB/ER9 cells was shown to be functional using a transiently transfected ERE-TK-luciferase construct. Expression of luciferase from this construct increased ~25-fold in hFOB/ER9 cells following 10?9M E2 treatment. This effect on ERE-TK-luciferase expression was both dose and steroid dependant. Further, treatment of hFOB/ER9 cells with 10?9M E2 resulted in a 2.5–4.0-fold increase in endogenous progesterone receptor (PR) levels detected by steroid binding assays, and a noticeable increase in both the A and B forms of PR by western blot assay. The establishment of this estrogen responsive human osteoblastic cell line should provide an excellent model system for the study of estrogen action on osteoblast function. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
Natural killer (NK) cells play a crucial role in host defense against pathogens and immune surveillance against cancer. Given that estrogens have been reported to suppress NK cell activity, we sought to elucidate the mechanisms by which estrogen mediates this effect. We demonstrate by immunocytochemical staining with estrogen receptor-alpha (ERalpha)- and estrogen receptor-beta (ERbeta)-specific antibodies that both ERalpha and ERbeta are expressed in murine NK cells. We also compared the ability of high doses of 17beta-estradiol ( approximately 800 pg/ml) to regulate NK cell activity in wild-type and estrogen receptor-alpha-deficient (ERalphaKO) mice. 17beta-estradiol elicited a significant decrease in NK cell activity in both wild-type and ERalphaKO mice (P < 0.001). These data suggest that ERbeta or possibly a novel receptor is involved in mediating estrogen action on NK cell activity and raise the potential for therapeutic modulation of NK cell activity with selective estrogen receptor modulators (SERMS).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号