首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Furthermore, the emphasis of this review is on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+, Cu2+, Hg2+, F, peptides), and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in the tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.  相似文献   

2.
Luminescent quantum dots (QDs) possess unique photophysical properties, which are advantageous in the development of new generation robust fluorescent probes based on Forster resonance energy transfer (FRET) phenomena. Bioconjugation of these QDs with biomolecules create hybrid materials having unique photophysical properties along with biological activity. The present study is aimed at characterizing QD bioconjugates in terms of optical behavior. Colloidal CdTe QDs capped with 3-mercaptopropionic acid (MPA) were conjugated to different proteins by the carbodiimide protocol using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) and a coupling reagent like N-hydroxysuccinimide (NHS). The photoabsorption of these QD-protein bioconjugates demonstrated an effective coupling of electronic orbitals of constituents. A linear variation in absorbance of bioconjugates at 330 nm proportionate to conjugation suggests a covalent attachment as confirmed by gel electrophoresis. A red shift in the fluorescence of bovine serum albumin (BSA) due to conjugation inferred a decrease in Stokes shift and solvent polarization effects on protein. A proportionate quenching in BSA fluorescence followed by an enhancement of QD fluorescence point toward nonradiative dipolar interactions. Further, reduction in photobleaching of BSA suggests QD-biomolecular interactions. Bioconjugation has significantly influenced the photoabsorption spectrum of QD bioconjugates suggesting the formation of a possible protein shell on the surface of QD. The experimental result suggests that these bioconjugates can be considered nanoparticle (NP) superstructures for the development of a new generation of robust nanoprobes.  相似文献   

3.
We demonstrate the use of self-assembled luminescent semiconductor quantum dot (QD)-peptide bioconjugates for the selective intracellular labeling of several eukaryotic cell lines. A bifunctional oligoarginine cell penetrating peptide (based on the HIV-1 Tat protein motif) bearing a terminal polyhistidine tract was synthesized and used to facilitate the transmembrane delivery of the QD bioconjugates. The polyhistidine sequence allows the peptide to self-assemble onto the QD surface via metal-affinity interactions while the oligoarginine sequence allows specific QD delivery across the cellular membrane and intracellular labeling as compared to nonconjugated QDs. This peptide-driven delivery is concentration-dependent and thus can be titrated. Upon internalization, QDs display a punctate-like staining pattern in which some, but not all, of the QD signal is colocalized within endosomes. The effects of constant versus limited exposure to QD-peptide conjugates on cellular viability are evaluated by a metabolic specific assay, and clear differences in cytotoxicity are observed. The efficacy of using peptides for selective intracellular delivery is highlighted by performing a multicolor QD labeling, where we found that the presence or absence of peptide on the QD surface controls cellular uptake.  相似文献   

4.
We characterize CdSe/ZnS quantum dot (QD) binding to genetically modified bacteriophage as a model for bacterial detection. Interactions among QDs, lambda (λ) phage, and Escherichia coli are examined by several cross‐validated methods. Flow and image‐based cytometry clarify fluorescent labeling of bacteria, with image‐based cytometry additionally reporting the number of decorated phage bound to cells. Transmission electron microscopy, image‐based cytometry, and electrospray differential mobility analysis allow quantization of QDs attached to each phage (4–17 QDs) and show that λ phage used in this study exhibits enhanced QD binding to the capsid by nearly a factor of four compared to bacteriophage T7. Additionally, the characterization methodology presented can be applied to the quantitative characterization of other fluorescent nanocrystal‐biological conjugates. Biotechnol. Bioeng. 2009;104: 1059–1067. Published 2009 Wiley Periodicals, Inc.  相似文献   

5.
We provide a detailed protocol for designing water-soluble CdSe-ZnS quantum dots (QDs) based on cap exchange of the native hydrophobic shell with dihydrolipoic acid (DHLA) ligands, and the preparation of functional QD bioconjugates for use in immunoassays. Our conjugation strategy is based on non-covalent self-assembly between DHLA-capped QDs and protein appended with either an electrostatic attachment domain (namely, the basic leucine zipper) or a polyhistidine tag. These bioconjugates combine the properties of the QD and attached biomolecule to create structures with desirable luminescent and biologically specific properties. This method also allows the preparation of mixed surface conjugates, which results in the conjugates gaining multiple biological activities. Conjugation of DHLA-capped QDs to maltose binding protein (MBP), the immunoglobulin-G-binding beta2 domain of streptococcal protein G (PG) and avidin will be described. MBP and PG were modified by genetic fusion with either a charged leucine zipper or a polyhistidine interaction domain.  相似文献   

6.
The synthesis of small-sized quantum dots (QDs) (1–10 nm) via the green route has garnered great interest regarding their prospective use in many biological applications (diagnosis, drug delivery and in vivo sensing); this is difficult to achieve using chemical synthesis methods, which produce larger size QD particles and also require hazardous reagents. Here, we synthesized biogenic cadmium sulphide (CdS) QDs using green tea extract as the reducing agent to produce particles that were homogeneous and a smaller size of 2–4 nm. We also elucidated the (a) protein binding, (b) antibacterial use and (c) sensing applications of biogenic CdS QDs in this present work. The biosynthesized CdS QDs were found to have extensive antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial strains. The introduction of QDs in biological medium can lead to the formation of protein–QD complexes; therefore we investigated the binding interaction of CdS QDs with the carrier protein human serum albumin (HSA) in vitro. The synthesized CdS QDs quenched the intrinsic fluorescence of HSA through a static quenching mechanism and the binding constant (Kb) was in the order of 104 M−1. It was also observed that the presence of biogenic CdS QDs affected the HSA–ligand interactions in vitro. The synthesized CdS made highly effective sensors for tetracycline, rifampicin, and bilirubin with limit of detection (LOD) values of 99, 141 and 29 ng/ml, respectively.  相似文献   

7.
对功能核酸概念的分析需要建立在对功能核酸研究的基础上,从内涵和外延两个方面来进行探析。从内涵来看,它是对具有特殊结构、执行特定生物功能的核酸分子的统称;从外延来看,它包括适体、核酸核酶、核糖开关、发光核酸、修饰核酸、功能核酸裁剪、核酸自组装、功能核酸纳米材料、核酸纳米酶、核酸药物、核酸补充剂以及DNA存储技术等。目前功能核酸已成功地应用于生物传感、生物成像、生物医学等诸多领域。对功能核酸这一概念进行了探讨,并尝试对其范畴、特点进行归纳总结,以期梳理和完善功能核酸的基本概念,促进该领域的进一步发展。  相似文献   

8.
纳米酶是指具有类酶催化活性的纳米材料.近年来,纳米酶研究引起了人们的极大兴趣.纳米酶已被广泛应用于诸如生物传感、生物成像、疾病治疗和环境保护等众多领域.在本综述中,我们将着重讨论纳米酶在分析化学领域的研究进展.首先将讨论纳米酶在体外检测的应用,将包括生物活性小分子、核酸、蛋白质类生物标志物、细胞等的检测.其后将讨论纳米酶在活体分析的应用,将包括监测活脑、肿瘤组织等的生物活性小分子、药物的药效、药物与纳米酶的代谢等.最后,我们将讨论纳米酶应用于分析化学时面临的挑战和未来研究前景.  相似文献   

9.
We have quantitatively analyzed the confocal spectra of colloidal quantum dots (QDs) in rat endothelial progenitor cells (EPCs) by using Leica TCS SP5 Confocal Microscopy System. Comparison of the confocal spectra of QDs located inside and outside EPCs revealed that the interaction between the QDs and EPCs effectively reduces the radius of the exciton confinement inside the QDs so that the excitonic energy increases and the QD fluorescence peak blueshifts. Furthermore, the EPC environment surrounding the QDs shields the QDs so that the excitation of the QDs inside the cells is relatively weak, whereas the QDs outside the cells can be highly excited. At high excitations, the occupation of the ground excitonic state in the QD outside the cells becomes saturated and high-energy states excited, resulting in a large relaxation energy and a broad fluorescence peak. This permits, in concept, to use QD biomarkers to monitor EPCs by characterizing QD fluorescence spectra.  相似文献   

10.
Biomedical applications of glyconanoparticles based on quantum dots   总被引:1,自引:0,他引:1  

Background

Quantum dots (QDs) are outstanding nanomaterials of great interest to life sciences. Their conjugation versatility added to unique optical properties, highlight these nanocrystals as very promising fluorescent probes. Among uncountable new nanosystems, in the last years, QDs conjugated to glycans or lectins have aroused a growing attention and their application as a tool to study biological and functional properties has increased.

Scope of review

This review describes the strategies, reported in the literature, to conjugate QDs to lectins or carbohydrates, providing valuable information for the elaboration, improvement, and application of these nanoconjugates. It also presents the main applications of these nanosystems in glycobiology, such as their potential to study microorganisms, the development of diseases such as cancer, as well as to develop biosensors.

Major conclusions

The development of glyconanoparticles based on QDs emerged in the last decade. Many works reporting the conjugation of QDs with carbohydrates and lectins have been published, using different strategies and reagents. These bioconjugates enabled studies that are very sensitive and specific, with potential to detect and elucidate the glycocode expressed in various normal or pathologic conditions.

General significance

Produce a quick reference source over the main advances reached in the glyconanotechnology using QDs as fluorescent probes.  相似文献   

11.
Bioconjugated quantum dots (QDs) provide a new class of biological labels for evaluating biomolecular signatures (biomarkers) on intact cells and tissue specimens. In particular, the use of multicolor QD probes in immunohistochemistry is considered one of the most important and clinically relevant applications. At present, however, clinical applications of QD-based immunohistochemistry have achieved only limited success. A major bottleneck is the lack of robust protocols to define the key parameters and steps. Here, we describe our recent experience, preliminary results and detailed protocols for QD-antibody conjugation, tissue specimen preparation, multicolor QD staining, image processing and biomarker quantification. The results demonstrate that bioconjugated QDs can be used for multiplexed profiling of molecular biomarkers, and ultimately for correlation with disease progression and response to therapy. In general, QD bioconjugation is completed within 1 day, and multiplexed molecular profiling takes 1-3 days depending on the number of biomarkers and QD probes used.  相似文献   

12.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Copper oxide nanomaterials were synthesized by a facile sustainable biological method using two plant species (Zanthoxylum armatum DC. and Berberis lycium Royle ). The formation of materials was confirmed by FT‐IR, ATR, UV‐visible, XRD, TEM, SEM, EDX, TGA and PL. The antibacterial activity was evaluated by agar well diffusion method to ascertain the efficacy of plant species extract and extract derived copper oxide nanomaterials against six Gram‐positive bacteria namely Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Corynebacterium diphtheriae, Corynebacterium xerosis, Bacillus cereus and four Gram‐negative bacteria such as Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris against the standard drug, Ciprofloxacin for Gram‐positive and Gentamicin for Gram‐negative bacteria, respectively. In both cases, copper oxide nanomaterials were found to be sensitive in all the bacterial species. Sensitivity of copper oxide nanomaterials shows an be higher as compared to plant species extract against different bacteria. Scavenging activity of plant extracts along with nanomaterials have been accessed using previously reported protocols employing ascorbic acid as standard. Scavenging activity of copper oxide nanomaterials shows an increase with increase in concentration. The biological activity (bactericidal and scavenging efficiency) of plant derived copper oxide nanomaterials revealed that these materials can be used as potent antimicrobial agent and DPPH scavengers in industrial as well as pharmacological fields.  相似文献   

14.
Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r) , rate of energy transfer kT (r), and transfer efficiency (E) are determined by employing both steady‐state and time‐resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern–Volmer (KD) and bimolecular quenching constants (kq) are determined from the Stern–Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Band gap tunable cadmium selenide (CdSe) quantum dots (QDs) were synthesized within earthworms that emit in the middle of the visible spectrum. We demonstrated that this luminescence emission is a combination of the earthworm's protein and QD luminescence, such that the contribution of QDs in the luminescence was negligible. Eisenia fetida earthworms were used for QD biosynthesis and were exposed to different concentrations of CdCl2 and Na2SeO3 in standard soil for an adequate exposure time. The size of the CdSe QDs based on the effective mass model was in agreement with the size measured from the transmission electron microscopy analysis, with an average diameter of 7 nm. Ultraviolet–visible and photoluminescence analyses confirmed the synthesis of CdSe QDs with unique absorption and luminescence at 430 nm and 605 nm, respectively.  相似文献   

16.
Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill‐defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG‐I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG‐I‐dependent IL‐1β‐production and inflammasome activation. The signalling molecule CARD9 contributed to IL‐1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG‐I provides a mechanistic explanation for efficient induction of immunity by live bacteria.  相似文献   

17.
The internalization of a series of water-soluble CdSe/CdS quantum dots (QDs) stabilized by citrate, isocitrate, succinate, and malate by Escherichia coli is established by epifluorescence and confocal fluorescence scanning microscopy, fluorimetry, and UV–vis spectroscopy on whole and lysed bacterial cells. The organic-acid-stabilized QDs span a range in size from 3.8±1.1 to 6.0±2.4 nm with emission wavelengths from 540 to 630 nm. QDs of different sizes (i.e., 3.8–6 nm) can enter the bacterium and be detected on different fluorescence channels with little interference from other QDs as a result of the distinct emission profiles (i.e., 540–630 nm, respectively). Costaining QD-labeled E. coli with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) demonstrates that the QDs and DAPI are colocalized within E. coli, whereas costaining QD-labeled E. coli with membrane dye FM4-64 shows that the FM4-64 is localized in the outer bacterial membrane and that the QDs are inside.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

18.
Quantum dot (QD) nanohybrids provide an effective route to explore the new properties of materials and are increasingly used as highly valuable sensitive (bio) chemical probes. Interestingly, the room-temperature phosphorescence (RTP) of 3-mercaptopropionic acid (MPA)-capped Mn-doped ZnS QDs could be remarkably enhanced by the addition of protamine. Based on the above finding, a simple, sensitive, and selective method for rapid detection of protamine was successfully designed. With this method, protamine as a cationic peptide interacts electrostatically with MPA-capped Mn-doped ZnS QDs to form MPA-capped Mn-doped ZnS QD/protamine complexes, which leads to the aggregation of QDs and enhances the RTP intensity. Under the optimized conditions, the RTP intensity change was linearly proportional to the concentration of protamine in the range 0.2–3.0 μg ml−1, and the limit of detection was 0.14 μg ml−1. The proposed method was successfully applied to detect protamine in protamine sulfate injection and human serum samples with satisfactory results, and the recovery ranged from 96.5 to 105.6%.  相似文献   

19.
In this paper, we report the use of lead sulfide quantum dot (PbS QD) bioconjugates as near infrared (NIR) contrast agents for targeted molecular imaging with expanded emission wavelengths beyond 1000 nm. The red-shifted emission band, coupled with the small particle size, which will facilitate clearance, both afford PbS QDs unique properties for noninvasive, high resolution in vivo NIR imaging applications. We have performed imaging experiments at the molecular level using surface-modified PbS NIR QDs, together with our lab-built NIR imaging system. This novel instrumentation and fluorescent contrast agent have enabled us to study the relatively unexplored NIR biomedical imaging spectral region of 900-1200 nm. Preliminary experimental results indicate that PbS-QD/antibody bioconjugates are promising candidates for targeted NIR molecular imaging and future in vivo NIR tissue imaging applications.  相似文献   

20.
Surface manipulation of quantum dots (QDs) has been extensively reported to be crucial to their performance when applied into optoelectronic devices, especially for photovoltaic devices. In this work, an efficient surface passivation method for emerging CsPbI3 perovskite QDs using a variety of inorganic cesium salts (cesium acetate (CsAc), cesium idodide (CsI), cesium carbonate (Cs2CO3), and cesium nitrate (CsNO3)) is reported. The Cs‐salts post‐treatment can not only fill the vacancy at the CsPbI3 perovskite surface but also improve electron coupling between CsPbI3 QDs. As a result, the free carrier lifetime, diffusion length, and mobility of QD film are simultaneously improved, which are beneficial for fabricating high‐quality conductive QD films for efficient solar cell devices. After optimizing the post‐treatment process, the short‐circuit current density and fill factor are significantly enhanced, delivering an impressive efficiency of 14.10% for CsPbI3 QD solar cells. In addition, the Cs‐salt‐treated CsPbI3 QD devices exhibit improved stability against moisture due to the improved surface environment of these QDs. These findings will provide insight into the design of high‐performance and low‐trap‐states perovskite QD films with desirable optoelectronic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号