首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it has been known that olfactory and mechanical inputs from the antenna converge in the antennal lobe of the deutocerebrum of the American cockroach, the capacity of antennal lobe neurons to integrate cues from these modalities was never examined. In the present study, neurons responsive to both the odor of lemon oil and to lateral displacement of the antenna were used to compare the effects of unimodal and bimodal stimulation. The combination of olfactory and mechanical stimuli produced increases over unimodal olfactory responses in 61% (30/49) of the neurons. In the remaining neurons the response either decreased (20%; 10/49), or no bimodal interaction was apparent (19%; 9/49). Dye injection (lucifer yellow) following physiological characterization revealed that these bimodal neurons are local neurons or projection neurons. The antennal lobe links the inputs from olfactory and mechanosensory systems and provides a substrate through which olfactory and mechanical stimuli influence one another's effects. Accepted: 29 September 1997  相似文献   

2.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

3.
In the moth, Manduca sexta, 3′,5′‐guanosine monophosphate (cGMP) is transiently elevated during adult development in about 100 neurons of the antennal lobe. We demonstrate that nearly all of these neurons are local interneurons of the lateral cluster I, that their capacity to show a strong cGMP response during development is regulated by the steroid hormone 20‐hydroxyecdysone, and that in a subpopulation of these neurons cGMP elevation seems to be controlled directly by the gaseous messenger molecule nitric oxide (NO). Treatment with the acetylcholine esterase inhibitor eserine, antennal nerve transection, and electrical stimulation of the antennae suggest that NO/cGMP signaling during development is an activity‐dependent process. Besides input from the antennae, input from the central brain and the ventral ganglia is involved in upregulating cGMP in the antennal‐lobe neurons. Possible sources are centrifugal aminergic neurons, since application of serotonin and histamine enhances the GMP signal in local interneurons. Comparing the time course of cGMP elevation with events occurring during development leads us to the hypothesis that the NO/cGMP signaling pathway might be involved in synapse formation of a subset of antennal‐lobe neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 359–375, 1999  相似文献   

4.
昆虫触角叶的结构   总被引:1,自引:0,他引:1  
赵新成  翟卿  王桂荣 《昆虫学报》2015,58(2):190-209
触角叶是昆虫脑内初级嗅觉中心,通过触角神经与触角联系。触角叶主要由嗅觉受体神经元、局域中间神经元、投射神经元和远心神经元构成。这些神经元的形态多样,其形态变化与其功能和昆虫嗅觉行为相关。这些神经元在触角叶内交织形成神经纤维网,在突触联系紧密的地方形成纤维球,纤维球通常排列在触角叶外周。通常,昆虫触角叶内纤维球的数量、大小和位置相对固定,并且几乎每个小球都可以被识别和命名。不同种类、性别和品级的昆虫中,纤维球的数量、大小和排列方式各不相同。触角叶结构神经元组成和纤维球的多样性,与各种昆虫嗅觉行为的特异性相对应。  相似文献   

5.
Using NADPH-diaphorase staining as a marker for nitric oxide (NO) synthase and an antiserum against cyclic GMP, we recently reported the anatomical distribution of nitric oxide donor and target cells in the antennal lobe, the principal olfactory neuropile of the locust. The most striking NADPH-diaphorase activity in the olfactory pathway is concentrated in a cluster of intensely stained local interneurons innervating the glomeruli. After incubation of tissue in a nitric oxide donor and inhibition of phospodiesterase activity, neurons of this cluster expressed cyclic GMP-immunoreactivity in the cell body and neurites. Here we examine the importance of the arrangement of NO donor and target cells for information processing in the glomeruli. The cellular organization of the NO-cyclic GMP system in olfactory interneurons, and the dendritic branching pattern, suggest that nitric oxide may not only act as intercellular, but also as intracellular messenger molecule in the glomerular neuropile of the antennal lobe. <br>  相似文献   

6.
Leung B  Waddell S 《Cell》2007,128(3):431-432
In the fly antennal lobe projection neurons receive odor information from olfactory sensory neurons and transmit it to higher brain centers. However, projection neurons respond differently to odors than sensory neurons, despite the fact that they appear to have one-to-one connectivity. Shang et al. (2007) now describe the existence of excitatory neurons within the antennal lobe that may account for some of these unexplained differences.  相似文献   

7.
The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection neurons which along the same major axon pathways (antennal tracts) used by the antennal projection neurons, but which form connections that include regions outside the “classical” olfactory circuit triad antennal lobe-mushroom body-lateral horn. Our work will benefit functional studies of the larval olfactory circuit, and shed light on the relationship between larval and adult neurons.  相似文献   

8.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

9.
The insect antennal lobe is the first brain structure to process olfactory information. Like the vertebrate olfactory bulb the antennal lobe is substructured in olfactory glomeruli. In insects, glomeruli can be morphologically identified, and have characteristic olfactory response profiles. Local neurons interconnect glomeruli, and output (projection) neurons project to higher-order brain centres. The relationship between their elaborate morphology and their physiology is not understood. We recorded electrophysiologically from antennal lobe neurons, and iontophoretically injected a calcium-sensitive dye. We then measured their spatio-temporal calcium responses to a variety of odours. Finally, we confocally reconstructed the neurons, and identified the innervated glomeruli. An increase or decrease in spiking frequency corresponded to an intracellular calcium increase or decrease in the cell. While intracellular recordings generally lasted between 10 and 30 min, calcium imaging was stable for up to 2 h, allowing a more detailed physiological analysis. The responses indicate that heterogeneous local neurons get input in the glomerulus in which they branch most strongly. In many cases, the physiological response properties of the cells corresponded to the known response profile of the innervated glomerulus. In other words, the large variety of response profiles generally found when comparing antennal lobe neurons is reduced to a more predictable response profile when the innervated glomerulus is known.Abbreviations ACT antenno-cerebralis-tract - AL antennal lobe - AP action potential - l-ACT lateral ACT - LN local neuron - LPL lateral protocerebral lobe - m-ACT medial ACT - MB mushroom body - OSN olfactory sensory neuron - PN projection neuron - T1 tract 1 of the antennal nerve  相似文献   

10.
Nitric oxide is emerging as an important modulator of many physiological processes including olfaction, yet the function of this gas in the processing of olfactory information remains poorly understood. In the antennal lobe of the moth, Manduca sexta, nitric oxide is produced in response to odor stimulation, and many interneurons express soluble guanylyl cyclase, a well-characterized nitric oxide target. We used intracellular recording and staining coupled with pharmacological manipulation of nitric oxide and soluble guanylyl cyclase to test the hypothesis that nitric oxide modulates odor responsiveness in olfactory interneurons through soluble guanylyl cyclase-dependent pathways. Nitric oxide synthase inhibition resulted in pronounced effects on the resting level of firing and the responses to odor stimulation in most interneurons. Effects ranged from bursting to strong attenuation of activity and were often accompanied by membrane depolarization coupled with a change in input resistance. Blocking nitric oxide activation of soluble guanylyl cyclase signaling mimicked the effects of nitric oxide synthase inhibitors in a subset of olfactory neurons, while other cells were differentially affected by this treatment. Together, these results suggest that nitric oxide is required for proper olfactory function, and likely acts through soluble guanylyl cyclase-dependent and -independent mechanisms in different subsets of neurons.  相似文献   

11.
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete‐expressing local interneurons in development of the adult olfactory circuitry. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

12.
Odor information is coded in the insect brain in a sequence of steps, ranging from the receptor cells, via the neural network in the antennal lobe, to higher order brain centers, among which the mushroom bodies and the lateral horn are the most prominent. Across all of these processing steps, coding logic is combinatorial, in the sense that information is represented as patterns of activity across a population of neurons, rather than in individual neurons. Because different neurons are located in different places, such a coding logic is often termed spatial, and can be visualized with optical imaging techniques. We employ in vivo calcium imaging in order to record odor‐evoked activity patterns in olfactory receptor neurons, different populations of local neurons in the antennal lobes, projection neurons linking antennal lobes to the mushroom bodies, and the intrinsic cells of the mushroom bodies themselves, the Kenyon cells. These studies confirm the combinatorial nature of coding at all of these stages. However, the transmission of odor‐evoked activity patterns from projection neuron dendrites via their axon terminals onto Kenyon cells is accompanied by a progressive sparsening of the population code. Activity patterns also show characteristic temporal properties. While a part of the temporal response properties reflect the physical sequence of odor filaments, another part is generated by local neuron networks. In honeybees, γ‐aminobutyric acid (GABA)‐ergic and histaminergic neurons both contribute inhibitory networks to the antennal lobe. Interestingly, temporal properties differ markedly in different brain areas. In particular, in the antennal lobe odor‐evoked activity develops over slow time courses, while responses in Kenyon cells are phasic and transient. The termination of an odor stimulus is reflected by a decrease in activity within most glomeruli of the antennal lobe and an off‐response in some glomeruli, while in the mushroom bodies about half of the odor‐activated Kenyon cells also exhibit off‐responses.  相似文献   

13.
In the moth, Manduca sexta, 3',5'-guanosine monophosphate (cGMP) is transiently elevated during adult development in about 100 neurons of the antennal lobe. We demonstrate that nearly all of these neurons are local interneurons of the lateral cluster I, that their capacity to show a strong cGMP response during development is regulated by the steroid hormone 20-hydroxyecdysone, and that in a subpopulation of these neurons cGMP elevation seems to be controlled directly by the gaseous messenger molecule nitric oxide (NO). Treatment with the acetylcholine esterase inhibitor eserine, antennal nerve transection, and electrical stimulation of the antennae suggest that NO/cGMP signaling during development is an activity-dependent process. Besides input from the antennae, input from the central brain and the ventral ganglia is involved in upregulating cGMP in the antennal-lobe neurons. Possible sources are centrifugal aminergic neurons, since application of serotonin and histamine enhances the GMP signal in local interneurons. Comparing the time course of cGMP elevation with events occurring during development leads us to the hypothesis that the NO/cGMP signaling pathway might be involved in synapse formation of a subset of antennal-lobe neurons.  相似文献   

14.
Tremendous evolutional success and the ecological dominance of social insects, including ants, termites and social bees, are due to their efficient social organizations and their underlying communication systems. Functional division into reproductive and sterile castes, cooperation in defending the nest, rearing the young and gathering food are all regulated by communication by means of various kinds of pheromones. No brain structures specifically involved in the processing of non-sexual pheromone have been physiologically identified in any social insects. By use of intracellular recording and staining techniques, we studied responses of projection neurons of the antennal lobe (primary olfactory centre) of ants to alarm pheromone, which plays predominant roles in colony defence. Among 23 alarm pheromone-sensitive projection neurons recorded and stained in this study, eight were uniglomerular projection neurons with dendrites in one glomerulus, a structural unit of the antennal lobe, and the remaining 15 were multiglomerular projection neurons with dendrites in multiple glomeruli. Notably, all alarm pheromone-sensitive uniglomerular projection neurons had dendrites in one of five 'alarm pheromone-sensitive (AS)' glomeruli that form a cluster in the dorsalmost part of the antennal lobe. All alarm pheromone-sensitive multiglomerular projection neurons had dendrites in some of the AS glomeruli as well as in glomeruli in the anterodorsal area of the antennal lobe. The results suggest that components of alarm pheromone are processed in a specific cluster of glomeruli in the antennal lobe of ants.  相似文献   

15.
This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.  相似文献   

16.
D Malun 《Histochemistry》1991,96(3):197-207
Two types of central neurons in the antennal lobe of the American cockroach Periplaneta americana were labeled with a combination of two specific markers. Their synaptic contacts were characterized and their distribution on the neurons examined. A uniglomerular pheromone-sensitive projection neuron with dendritic arbor in the male-specific macroglomerulus (attractant neuron) was characterized physiologically by intracellular recording and then filled with biocytin, which was converted to a marker for this individual neuron by a preembedding procedure. In a postembedding procedure local, multiglomerular interneurons were marked by immunogold labeling of GABA. Two kinds of synaptic contacts were found on the attractant neuron. (i) Input synapses from GABA-immunoreactive profiles. There were many of these, which (together with results of previous studies) suggests that local interneurons mediate polysynaptic transmission from antennal receptor fibers to the projection neuron. (ii) Output synapses onto GABA-immunoreactive profiles and onto non-identified neurons. These contacts indicate that signals generated by the projection neurons in a given glomerulus are passed back to multiglomerular interneurons and hence are also transmitted to other glomeruli.  相似文献   

17.
Wong AM  Wang JW  Axel R 《Cell》2002,109(2):229-241
In the fruit fly, Drosophila, olfactory sensory neurons expressing a given receptor project to spatially invariant loci in the antennal lobe to create a topographic map of receptor activation. We have asked how the map in the antennal lobe is represented in higher sensory centers in the brain. Random labeling of individual projection neurons using the FLP-out technique reveals that projection neurons that innervate the same glomerulus exhibit strikingly similar axonal topography, whereas neurons from different glomeruli display very different patterns of projection in the protocerebrum. These results demonstrate that a topographic map of olfactory information is retained in higher brain centers, but the character of the map differs from that of the antennal lobe, affording an opportunity for integration of olfactory sensory input.  相似文献   

18.
19.
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process -lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号