共查询到20条相似文献,搜索用时 15 毫秒
1.
Heo DR Shin SJ Kim WS Noh KT Park JW Son KH Park WS Lee MG Kim D Shin YK Jung ID Park YM 《Biochemical and biophysical research communications》2011,(3):642-647
Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naïve T cells, polarized CD4+ and CD8+ T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis. 相似文献
2.
Popovic PJ DeMarco R Lotze MT Winikoff SE Bartlett DL Krieg AM Guo ZS Brown CK Tracey KJ Zeh HJ 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(12):8701-8707
Plasmacytoid dendritic cells (PDC) are innate immune effector cells that are recruited to sites of chronic inflammation, where they modify the quality and nature of the adaptive immune response. PDCs modulate adaptive immunity in response to signals delivered within the local inflammatory milieu by pathogen- or damage-associated molecular pattern, molecules, and activated immune cells (including NK, T, and myeloid dendritic cells). High mobility group B1 (HMGB1) is a recently identified damage-associated molecular pattern that is released during necrotic cell death and also secreted from activated macrophages, NK cells, and mature myeloid dendritic cells. We have investigated the effect of HMGB1 on the function of PDCs. In this study, we demonstrate that HMGB1 suppresses PDC cytokine secretion and maturation in response to TLR9 agonists including the hypomethylated oligodeoxynucleotide CpG- and DNA-containing viruses. HMGB1-inhibited secretion of several proinflammatory cytokines including IFN-alpha, IL-6, TNF-alpha, inducible protein-10, and IL-12. In addition, HMGB1 prevented the CpG induced up-regulation of costimulatory molecules on the surface of PDC and potently suppressed their ability to drive generation of IFN-gamma-secreting T cells. Our observations suggest that HMGB1 may play a critical role in regulating the immune response during chronic inflammation and tissue damage through modulation of PDC function. 相似文献
3.
Zhu XM Yao FH Yao YM Dong N Yu Y Sheng ZY 《The international journal of biochemistry & cell biology》2012,44(7):1097-1105
High mobility group box-1 protein (HMGB1) had been proved to induce maturation and activation of dendritic cell (DC), however, the endogenous changes and mechanisms underlying are unknown. Since endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular survival and repair, we hypothesized that HMGB1 may regulate the function of DC by modulating ERS. In our study, HMGB1 stimulation induced significant ERS responses in DCs in a time- and dose-dependent manner, demonstrated by the up-regulation of a number of ERS markers. Gene silence of XBP-1 in splenic DCs decreased the levels of CD80, CD86 as well as major histocompatibility complex (MHC)-II expression and cytokine secretion after HMGB1 treatment, when compared with untransfected or nontargeting-transfected DCs (all P<0.05). Moreover, XBP-1 silenced DCs after treatment with HMGB1 failed to stimulate notable proliferation and differentiation of T cells, unlike normal DCs or nontargeting-transfected DCs (all P<0.05). Gene silence of XBP-1 resulted in down-regulation of the receptor for advanced glycation end products (RAGE) expression on the surface of splenic DCs induced by HMGB1 stimulation (P<0.05). These findings demonstrate an important role for ERS and its regulator XBP-1 in HMGB1-induced maturation and activation of DCs. 相似文献
4.
5.
《Cell Adhesion & Migration》2013,7(5):493-498
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is characterized as a typical inflammation-related carcinoma. High mobility group box protein 1 (HMGB1), a non-histone DNA-binding protein, is identified as a potent proinflammatory mediator when presents extracellularly. Recently, a growing body of evidence indicates that HMGB1 plays a potential role in HCC, but many questions remain unanswered about the relationship between HMGB1 and HCC formation and development. This review focuses on the biological effect of HMGB1, and discusses the association of HMGB1 with HCC and potential use of strategies targeting HMGB1 in HCC treatment. 相似文献
6.
Wähämaa H Schierbeck H Hreggvidsdottir HS Palmblad K Aveberger AC Andersson U Harris HE 《Arthritis research & therapy》2011,13(4):R136
Introduction
In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). Furthermore, we examined the toll-like receptor (TLR) 4 and IL-1RI requirement for the cytokine-enhancing effects of the investigated HMGB1-ligand complexes. 相似文献7.
Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12 总被引:2,自引:0,他引:2
Lamhamedi-Cherradi SE Martin RE Ito T Kheradmand F Corry DB Liu YJ Moyle M 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(9):6000-6009
Allergens are capable of polarizing the T cell immune response toward a Th2 cytokine profile in a process that is mediated by dendritic cells (DCs). Proteases derived from Aspergillus species (Aspergillus proteases; AP) have been shown to induce a Th2-like immune response when administered directly to the airway and without adjuvant or prior priming immunizations at sites remote from the lung in models of allergic airway disease. To explore mechanisms that underlie the Th2 immune response, we have investigated the effect of AP on DC function. We found that human DCs derived from CD14(+) monocytes from healthy donors underwent partial maturation when incubated with AP. Naive allogeneic T cells primed with AP-activated DCs proliferated and displayed enhanced production of IL-4 and reduced expression of IFN-gamma as compared with naive T cells primed with LPS-activated DCs. Global gene expression analysis of DCs revealed relatively low expression of IL-12p40 in AP-activated DCs as compared with those activated by LPS, and this was confirmed at the protein level by ELISA. Exogenous IL-12p70 added to cocultures of DCs and T cells resulted in reduced IL-4 and increased IFN-gamma expression when DCs were activated with AP. When the proteolytic activity of AP was neutralized by chemical inactivation it failed to up-regulate costimulatory molecules on DCs, and these DCs did not prime a Th2 response in naive T cells. These findings provide a mechanism for explaining how proteolytically active allergens could preferentially induce Th2 responses through limited maturation of DCs with reduced production of IL-12. 相似文献
8.
Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products 总被引:22,自引:0,他引:22
Dumitriu IE Baruah P Valentinis B Voll RE Herrmann M Nawroth PP Arnold B Bianchi ME Manfredi AA Rovere-Querini P 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(12):7506-7515
High mobility group box 1 (HMGB1) is an abundant and conserved nuclear protein that is released by necrotic cells and acts in the extracellular environment as a primary proinflammatory signal. In this study we show that human dendritic cells, which are specialized in Ag presentation to T cells, actively release their own HMGB1 into the extracellular milieu upon activation. This secreted HMGB1 is necessary for the up-regulation of CD80, CD83, and CD86 surface markers of human dendritic cells and for IL-12 production. The HMGB1 secreted by dendritic cells is also required for the clonal expansion, survival, and functional polarization of naive T cells. Using neutralizing Abs and receptor for advanced glycation end product-deficient (RAGE(-/-)) cells, we demonstrate that RAGE is required for the effect of HMGB1 on dendritic cells. HMGB1/RAGE interaction results in downstream activation of MAPKs and NF-kappaB. The use of an ancient signal of necrosis, HMGB1, by dendritic cells to sustain their own maturation and for activation of T lymphocytes represents a profitable evolutionary mechanism. 相似文献
9.
Hypercytokinemia is gaining recognition as the mechanism of fatality from influenza. No work to date has addressed the role of high mobility group box 1 protein (HMGB1) in influenza, the parallel being that in other severe proinflammatory cytokine syndromes (e.g., sepsis and malaria) levels of circulating HMGB1 are elevated and may correlate with death. Using a commercially available ELISA for HMGB1, we found that HMGB1 was not increased in the plasma of influenza virus-infected mice (A/Japan/305/57) on day 7 post infection, about the time of peak mortality, and peak levels of HMGB1 in the plasma did not occur until relatively late in infection, on day 9 post infection. In keeping with the late peak of HMGB1 being unassociated with mortality, administration of ethyl pyruvate, which inhibits active secretion but not passive release of HMGB1, to influenza virus-infected mice, did not affect their survival. Further work is required to determine whether influenza virus infection induces passive release of HMGB1, and whether HMGB1 neutralization with a specific Ab would improve survival. 相似文献
10.
Cutting edge: bradykinin induces IL-12 production by dendritic cells: a danger signal that drives Th1 polarization 总被引:3,自引:0,他引:3
Aliberti J Viola JP Vieira-de-Abreu A Bozza PT Sher A Scharfstein J 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(11):5349-5353
Dendritic cells play a major role in the induction of both innate and acquired immune responses against pathogenic invaders. These cells are also able to sense endogenous activation signals liberated by injured tissues even in the absence of infection. In the present work, we demonstrate that kinins mobilize dendritic cells to produce IL-12 through activation of the B(2) bradykinin receptor subtype and that bradykinin-induced IL-12 responses are tightly regulated both by angiotensin-converting enzyme, a kinin-degrading peptidase, and by endogenous IL-10. Using a mouse model of allergic inflammation, we further show that addition of bradykinin to OVA during immunization results in decreased eosinophil infiltration on Ag challenge. The latter effect was demonstrated to be due to IL-12-driven skewing of Ag-specific T cell responses to a type 1 cytokine profile. Our data thus indicate that kinin peptides can serve as danger signals that trigger dendritic cells to produce IL-12 through activation of B(2) bradykinin receptors. 相似文献
11.
Agneta Zickert Karin Palmblad Birgitta Sundelin Sangeeta Chavan Kevin J Tracey Annette Bruchfeld Iva Gunnarsson 《Arthritis research & therapy》2012,14(1):R36-10
Introduction
High mobility group box 1 protein (HMGB1) is a nuclear DNA binding protein acting as a pro-inflammatory mediator following extracellular release. HMGB1 has been increasingly recognized as a pathogenic mediator in several inflammatory diseases. Elevated serum levels of HMGB1 have been detected in autoimmune diseases including Systemic lupus erythematosus (SLE). However, the local expression of HMGB1 in active lupus nephritis (LN) is not known. Here we aimed to study both tissue expression and serum levels of HMGB1 in LN patients with active disease and after induction therapy.Methods
Thirty-five patients with active LN were included. Renal biopsies were performed at baseline and after standard induction therapy; corticosteroids combined with immunosuppressive drugs. The biopsies were evaluated according to the World Health Organization (WHO) classification and renal disease activity was estimated using the British Isles lupus assessment group (BILAG) index. Serum levels of HMGB1 were analysed by western blot. HMGB1 expression in renal tissue was assessed by immunohistochemistry at baseline and follow-up biopsies in 25 patients.Results
Baseline biopsies showed WHO class III, IV or V and all patients had high renal disease activity (BILAG A/B). Follow-up biopsies showed WHO I to II (n = 14), III (n = 6), IV (n = 3) or V (n = 12), and 15/35 patients were regarded as renal responders (BILAG C/D). At baseline HMGB1 was significantly elevated in serum compared to healthy controls (P < 0.0001). In all patients, serum levels decreased only slightly; however, in patients with baseline WHO class IV a significant decrease was observed (P = 0.03). Immunostaining revealed a pronounced extranuclear HMGB1 expression predominantly outlining the glomerular endothelium and in the mesangium. There was no clear difference in HMGB1 expression comparing baseline and follow-up biopsies or any apparent association to histopathological classification or clinical outcome.Conclusions
Renal tissue expression and serum levels of HMGB1 were increased in LN. The lack of decrease of HMGB1 in serum and tissue after immunosuppressive therapy in the current study may reflect persistent inflammatory activity. This study clearly indicates a role for HMGB1 in LN. 相似文献12.
IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism 总被引:23,自引:0,他引:23
Rendon-Mitchell B Ochani M Li J Han J Wang H Yang H Susarla S Czura C Mitchell RA Chen G Sama AE Tracey KJ Wang H 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(7):3890-3897
We recently discovered that a ubiquitous protein, high mobility group box 1 protein (HMGB1), is released by activated macrophages, and functions as a late mediator of lethal systemic inflammation. To elucidate mechanisms underlying the regulation of HMGB1 release, we examined the roles of other cytokines in induction of HMGB1 release in macrophage cell cultures. Macrophage migration inhibitory factor, macrophage-inflammatory protein 1beta, and IL-6 each failed to significantly induce the release of HMGB1 even at supraphysiological levels (up to 200 ng/ml). IFN-gamma, an immunoregulatory cytokine known to mediate the innate immune response, dose-dependently induced the release of HMGB1, TNF, and NO, but not other cytokines such as IL-1alpha, IL-1beta, or IL-6. Pharmacological suppression of TNF activity with neutralizing Abs, or genetic disruption of TNF expression (TNF knockout) partially (50-60%) inhibited IFN-gamma-mediated HMGB1 release. AG490, a specific inhibitor for Janus kinase 2 of the IFN-gamma signaling pathway, dose-dependently attenuated IFN-gamma-induced HMGB1 release. These data suggest that IFN-gamma plays an important role in the regulation of HMGB1 release through a TNF- and Janus kinase 2-dependent mechanism. 相似文献
13.
Hofner P 《Acta microbiologica et immunologica Hungarica》2007,54(4):323-337
High mobility group box 1 protein (HMGB-1), a nuclear protein is a critical cytokine that mediates the response to infection, injury and inflammation. The aim of our study was to elaborate a reliable in vitro model to investigate whether Mycobacterium bovis BCG is able to induce HMGB-1 secretion from the monocytic U-937 cells. Western blot technique was applied for the detection of HMGB-1 from supernatants of cells, following induction with LPS, Staphylococcus aureus, and Mycobacterium bovis BCG. HMGB-1 was subjected to MALDI-TOF mass and PSD analysis. Quantitation of the secreted HMGB-1 was performed by ELISA. The BCG strain induced higher amounts of secreted HMGB-1 than LPS or Staphylococcus aureus. The translocation of the HMGB-1 to the cytoplasm following infection of cells with BCG was demonstrated by immunofluorescence examinations. CONCLUSION: Our pilot experiments draw attention the to HMGB-1-inducing ability of Mycobacterium bovis. Assessment of the pathophysiological role of this late cytokine in mycobacterial infections demands further in vitro and in vivo examinations. 相似文献
14.
Hyperlipidemia stimulates the extracellular release of the nuclear high mobility group box 1 protein
Our aim was to evaluate the effect of hyperlipidemia on the activation of endogenous alarmin, the high mobility group box
1 (HMGB1) protein, related to systemic inflammation associated with the progression of experimental atherosclerosis and to
establish whether statin treatment regulates the HMGB1 signaling pathway. Hyperlipidemia was induced in vivo in golden Syrian
hamsters and in monocyte cell culture (U937) by feeding the animals with a high-fat Western diet and by exposing the cells
to hyperlipidemic serum. Blood samples, heart, lung and cells were harvested for biochemical, morphological, Western blot,
quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses. The data revealed that, in the atherosclerotic
animal model, the protein HMGB1 and its gene expression were increased and that fluvastatin treatment significantly reduced
the release of HMGB1 into the extracellular space. The cell culture experiments demonstrated the relocation of HMGB1 protein
from the nucleus to cytoplasm under hyperlipidemic stress. The high level of detected HMGB1 correlated positively with the
up-regulation of the advanced glycation end product receptors (RAGE) in the lung tissue from hyperlipidemic animals. During
hyperlipidemic stress, the AKT signaling pathway could be activated by HMGB1-RAGE interaction. These results support the existence
of a direct correlation between experimentally induced hyperlipidemia and the extracellular release of HMGB1 protein; this
might be controlled by statin treatment. Moreover, the data suggest new potentials for statin therapy, with improved effects
on patients with systemic inflammation induced by hyperlipidemia. 相似文献
15.
16.
17.
Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype 总被引:22,自引:0,他引:22
Flohé SB Brüggemann J Lendemans S Nikulina M Meierhoff G Flohé S Kolb H 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(5):2340-2348
Heat shock protein (HSP) 60 nonspecifically activates cells of the innate immune system. In the present study, we characterized the effects of human HSP60 maturation, cytokine release, and T cell-activating capacity of bone marrow-derived dendritic cells (DC). Furthermore, we analyzed HSP60-induced signal transduction in DC. HSP60 strongly stimulated DC for maturation and release of TNF-alpha, IL-12, and IL-1 beta. However, HSP60 elicited only a weak IL-10 response in DC suggesting a Th1 bias. HSP60-treated DC induced proliferation of allogeneic T cells. Again, a Th1 bias was noted in that cocultures of allogeneic T cells and HSP60-treated DC released IFN-gamma but only small amounts of IL-10 and no detectable IL-4. Signaling via Toll-like receptor 4 was involved in HSP60-induced cytokine release and maturation because DC of C3H/HeJ mice with a mutant Toll-like receptor 4 showed deficient response to HSP60. HSP60 was found to rapidly activate the mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase as well as I kappa B in DC. Phosphorylation of these signaling molecules was also mediated by LPS, but with much slower kinetics. Thus, HSP60 stimulates DC more rapidly than LPS and elicits a Th1-promoting phenotype. These results suggest that DC play a pivotal role in priming for destructive Th1-type responses at sites of local HSP60 release. 相似文献
18.
High mobility group protein 1 preferentially conserves torsion in negatively supercoiled DNA 总被引:15,自引:0,他引:15
HMG 1 is known to bind to a variety of DNAs and to unwind nicked and closed circular DNA. We now report evidence that it has a significantly higher unwinding angle on negatively supercoiled DNA than on the other torsional forms. The degree of unwinding observed on nicked circular DNA depends on the purity of the HMG 1 preparation used. HMG 1 from CM-Sephadex has an unwinding angle of 28.8 degrees, compared to 7.2 degrees for the purer preparation obtained from Mono S, suggesting that contaminating strand-separating activity is removed by the additional purification step. The subsequent studies on closed circular forms of DNA were all performed using the purer HMG 1. After preincubation of highly negatively supercoiled DNA (sigma = -0.040) with HMG 1, the DNA-protein mixture was relaxed with Escherichia coli topoisomerase I. At molar ratios of less than 100:1 (HMG 1 to DNA), negatively supercoiled DNA displays a dose-dependent change in the linking number, indicating an unwinding angle of 57.6 degrees. HMG 1 protects 50% of highly negatively supercoiled DNA from E. coli topoisomerase I at a molar ratio of 100:1, and protects all supercoils at a molar ratio of 200:1, indicating saturation of the DNA at this concentration. HMG 1 also protects highly negatively supercoiled DNA from calf thymus topoisomerase I, with an apparent unwinding angle of 57.6 degrees. Moderately negatively supercoiled DNA (sigma = -0.018), but not moderately positively supercoiled DNA (sigma = +0.011), competes for the protective effect of HMG 1 on highly negatively supercoiled DNA.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Shootin1: A protein involved in the organization of an asymmetric signal for neuronal polarization
下载免费PDF全文

Toriyama M Shimada T Kim KB Mitsuba M Nomura E Katsuta K Sakumura Y Roepstorff P Inagaki N 《The Journal of cell biology》2006,175(1):147-157
Neurons have the remarkable ability to polarize even in symmetrical in vitro environments. Although recent studies have shown that asymmetric intracellular signals can induce neuronal polarization, it remains unclear how these polarized signals are organized without asymmetric cues. We describe a novel protein, named shootin1, that became up-regulated during polarization of hippocampal neurons and began fluctuating accumulation among multiple neurites. Eventually, shootin1 accumulated asymmetrically in a single neurite, which led to axon induction for polarization. Disturbing the asymmetric organization of shootin1 by excess shootin1 disrupted polarization, whereas repressing shootin1 expression inhibited polarization. Overexpression and RNA interference data suggest that shootin1 is required for spatially localized phosphoinositide-3-kinase activity. Shootin1 was transported anterogradely to the growth cones and diffused back to the soma; inhibiting this transport prevented its asymmetric accumulation in neurons. We propose that shootin1 is involved in the generation of internal asymmetric signals required for neuronal polarization. 相似文献
20.