首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

2.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

3.
In previous studies rat hepatocytes have been shown to adhere to substrates composed of collagen or fibronectin. In the present communication, the basement membrane protein laminin is reported to mediated the attachment and spreading of hepatocytes. The cell attachment-mediating activity of laminin was compared with that of fibronectin. The activity of fibronectin was heat sensitive, whereas laminin retained its activity after boiling. On the other hand, reduction and alkylation or periodate oxidation of the proteins affected only the cell attachment activity of laminin. Preincubation of cells with soluble fibronectin inhibited initial cell attachment to fibronectin but not to laminin substrates, and, reversely, soluble laminin selectively inhibited cell attachment to laminin. These results suggest that attachment of cells to substrates of the two proteins involves different cellular receptors recognizing distinct and nonidentical structures in the proteins.  相似文献   

4.
Attachment of cells to basement membrane collagen type IV   总被引:17,自引:8,他引:9       下载免费PDF全文
Of ten different cell lines examined, three showed distinct attachment and spreading on collagen IV substrates, and neither attachment nor spreading was enhanced by adding soluble laminin or fibronectin. This reaction was not inhibited by cycloheximide or antibodies to laminin, indicating a direct attachment to collagen IV without the need of mediator proteins. Cell-binding sites were localized to the major triple-helical domain of collagen IV and required an intact triple helical conformation for activity. Fibronectin showed preferential binding to denatured collagen IV necessary to mediate cell binding to the substrate. Fibronectin binding sites of collagen IV were mapped to unfolded structures of the major triple-helical domain and show a similar specificity to fibronectin-binding sites of collagen I. The data extend previous observations on biologically potential binding sites located in the triple helix of basement membrane collagen IV.  相似文献   

5.
Hepatocytes from adult and 4-week-old rats cultured on one of several extracellular matrix components were stimulated to replicate by epidermal growth factor (EGF). DNA synthesis was increased at 44-48 hr in adult hepatocytes and at 24, 48, and 72 hr in hepatocytes from young rats when EGF was added 2 hr after explantation. When EGF was added at 24 hr, maximal DNA synthesis of adult hepatocytes was observed at 48 hr, whereas that of 4-week-old hepatocytes was seen at 48 and 72 hr. Ten ng EGF per ml was the optimal concentration for maximal DNA synthesis in both adult and young cells. DNA synthesis decreased with increasing cell density, but this effect was less in hepatocytes from young than in those from adults. When hepatocytes were cultured on substrata consisting of individual extracellular matrix components, neither the time that adult cells needed to respond to EGF nor the time from stimulation by EGF to the peak of maximal DNA synthesis was altered in either adult or young cells. The optimal EGF concentration for maximal DNA synthesis and the cell density control of replication were also not altered by the substrata used. Substrata made from each of the extracellular matrix components studied enhanced DNA synthesis of adult and young hepatocytes stimulated by EGF in the following decreasing order: fibronectin, type IV collagen, type I collagen, and laminin. In both adult and young hepatocytes the enhancement of DNA synthesis was greatest when cultured on fibronectin. Thus the initiation and magnitude of DNA synthesis in primary cultures of rat hepatocytes were altered both by the age of the donor and the substratum on which the cells were explanted.  相似文献   

6.
《The Journal of cell biology》1990,111(5):2117-2127
We have identified an integral membrane glycoprotein in rat liver that mediates adhesion of cultured hepatocytes on fibronectin substrata. The protein was isolated by affinity chromatography of detergent extracts on wheat germ lectin-Agarose followed by chromatography of the WGA binding fraction on fibronectin-Sepharose. The glycoprotein (AGp110), eluted at high salt concentrations from the fibronectin column, has a molecular mass of 110 kD and a pI of 4.2. Binding of immobilized AGp110 to soluble rat plasma fibronectin required Ca2+ ions but was not inhibited by RGD peptides. Fab' fragments of immunoglobulins raised in rabbits against AGp110 reversed the spreading of primary hepatocytes attached onto fibronectin-coated substrata, but had no effect on cells spread on type IV collagen or laminin substrata. The effect of the antiserum on cell spreading was reversible. AGp110 was detected by immunofluorescence around the periphery of the ventral surface of substratum attached hepatocytes, and scattered on the dorsal surface. Immunohistochemical evidence and Western blotting of fractionated liver plasma membranes indicated a bile canalicular (apical) localization of AGp110 in the liver parenchyma. Expression of AGp110 is tissue specific: it was found mainly in liver, kidney, pancreas, and small intestine but was not detected in stomach, skeletal muscle, heart, and large intestine. AGp110 could be labeled by lactoperoxidase-catalyzed surface iodination of intact liver cells and, after phase partitioning of liver plasma membranes with the detergent Triton X-114, it was preferentially distributed in the hydrophobic phase. Treatment with glycosidases indicated extensive sialic acid substitution in at least 10 O-linked carbohydrate chains and 1-2 N-linked glycans. Immunological comparisons suggest that AGp110, the integrin fibronectin receptor and dipeptidyl peptidase IV, an enzyme involved in fibronectin-mediated adhesion of hepatocytes on collagen, are distinct proteins.  相似文献   

7.
Human diploid fibroblasts (TIG-3) were shown to attach and spread onto substrata coated with collagen, fibronectin, laminin and vitronectin. The cell attachment to these proteins required divalent cations. Mg2+ stimulated the cell attachment to all the proteins, while Ca2+ alone was not effective for the attachment to collagen and laminin. A mild trypsin treatment had prevented cells from attaching to the laminin, while it had no effect on the attachment to the other proteins. The fibronectin fragment, which retained cell binding activity, inhibited the cells from attaching and spreading onto fibronectin, but it did not cause any inhibition on the other proteins. The synthetic peptide GRGDSP inhibited the cells from attaching and spreading onto fibronectin and vitronectin, while it did not cause any inhibition on collagen and laminin. In attempts to isolate distinct receptors for these proteins, we were able to purify proteins very similar to the fibronectin and vitronectin receptors of human placenta. Based on the differential properties of the attachment of TIG-3 cells to these proteins and biochemical data, we indicate that human diploid fibroblasts have distinctive binding sites (receptors) for collagen, fibronectin, laminin and vitronectin.  相似文献   

8.
Little is known about the role of the extracellular matrix in cellular growth, migration and differentiation in the developing liver. The distribution and origin of the main constituents of the hepatic extracellular matrix have never been studied during liver differentiation. We have investigated the extracellular and intracellular distribution of fibronectin, laminin and types I, III and IV collagen in both rat and human liver during the perinatal period by light and electron microscopy, using the indirect immunoperoxidase method. All these components were demonstrated extracellularly, located mainly in portal spaces and, to a lesser extent, surrounding central veins. In perisinusoidal spaces, variations in distribution were observed depending on the matrix protein, the age of the donor and the species. In fetal rat liver, fibronectin formed a continuous layer around hepatocyte clusters while laminin and type III procollagen were present in small amounts. Collagens and laminin were visualized more easily in newborn rat liver. Fetal and newborn human liver contained higher amounts of matrix components than their rat counterparts. Fibronectin also reacted strongly in the sinusoid, and laminin and collagens formed discontinuous deposits. The source of this extracellular matrix was demonstrated to be of mixed origin. The major finding was the presence of immunoreactive laminin in the rough endoplasmic reticulum of hepatocytes irrespective of the age or species. In addition, hepatocytes contained large amounts of fibronectin and little of type I collagen. Another basement membrane component, type IV collagen, was also found in hepatocytes from all groups except fetal rat. Perisinusoidal cells also contained various matrix components including laminin, type III procollagen and, again with the exception of fetal rat liver, type IV collagen. The greater amounts of basement membrane components in the sinusoids of developing liver than in adult tissue and the participation of immature hepatocytes in the production of laminin and to a lesser degree of type IV collagen suggest that these matrix proteins play a critical role during liver differentiation.  相似文献   

9.
The effect of sphingosine (SPH) on the adhesive properties of Lewis lung carcinoma (3LL) cells was investigated using plastic precoated with the extracellular matrix proteins, laminin, fibronectin, or type IV collagen. Treatment of 3LL cells with SPH (0.5-10 microM) resulted in a dose-dependent decrease in the ability to bind to laminin and type IV collagen but had little or no effect on attachment to fibronectin. Phorbol 12-myristate 13-acetate (PMA) selectively enhanced attachment of 3LL cells to laminin and collagen. The inhibitory effect of SPH on attachment to both proteins was competitively antagonized by PMA. These results suggest that SPH acts as a negative effector for cell attachment to laminin and collagen, and that the cell attachment process to both proteins might be regulated in part by protein kinase C.  相似文献   

10.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

11.
The purpose of the present study was to observe the expansion of a monolayer of endothelial cells over specific components of the basement membrane. This was performed in vitro in a monolayer expansion assay over 5 days. The control surface was uncoated glass in the form of coverslips. Test substances were coated at a concentration of 10 micrograms/ml. The highest expansion was obtained with a high molecular weight fragment mixture of collagen type IV (IV-F, consisting of 75, 120 and 140 KD fragments), followed by fibronectin. Collagens type I, III and IV tetramer gave similar results, less than fibronectin or collagen type IV-F, although all of the above basement membrane coatings promoted expansion significantly above that of the control (P less than 0.01). The poorest expansion was obtained with laminin, which was significantly less than the control. The pentapeptide GRGDS, related to the fibronectin cell binding region, gave expansion significantly below that of the intact fibronectin molecule, as did the intact collagen type IV molecule compared with type IV-F (P less than 0.025). This indicates that sequences of the fibronectin molecule other than the cell binding sequence may be involved in promoting endothelial cell expansion. In addition, the integrity of the collagen type IV molecule does not appear necessary for this effect. On the contrary, the higher movement on IV-F may represent an inherent repair mechanism in damaged endothelium. Autoradiographic studies show that endothelial cell proliferation at the expanding front is involved in the migration assay.  相似文献   

12.
Interaction of Campylobacter jejuni with extracellular matrix components   总被引:2,自引:0,他引:2  
The adhesion of three strains of Campylobacter jejuni to coverslips and microwells coated with isolated extracellular matrix components, fibronectin, laminin and types I, III, IV and V collagens was studied. Fibronectin mediated the adherence of C. jejuni, but there were differences in the binding capacities of the strains. Type I, III and V collagens mediated very strongly the attachment of two strains of C. jejuni. All three strains attached weakly to basement membrane-specific type IV collagen. Laminin was capable of mediating the adhesion only when present at a higher concentration. The observations indicate that extracellular matrix components may serve as anchor molecules for C. jejuni adhesion and that several attachment mechanisms occur simultaneously.  相似文献   

13.
We examined the synthesis of extracellular matrix macromolecules by the differentiated rat thyroid epithelial cell line FRTL-5. As shown by electron microscopy, the extracellular material produced by these cells is deposited at the basolateral surface and focally organized in the form of a basement membrane. Biochemical and biosynthetic studies demonstrated that laminin, type IV collagen, and fibronectin are synthesized and deposited in the culture monolayer. Secretion of fibronectin into the culture medium also occurred. By immunofluorescence we observed some peculiarities in the distribution patterns of the basement membrane glycoproteins; while fibronectin and laminin had an almost superimposable distribution, type IV collagen displayed a rather different pattern. Type IV collagen and laminin localization at sites where extracellular material was detected was confirmed by immuno electronmicroscopy using the protein A-colloidal gold technique. The results indicate that under appropriate culture conditions the differentiated thyroid epithelial cell line FRTL-5 synthesizes, secretes and organizes an extracellular matrix where some basement membrane glycoproteins are present.  相似文献   

14.
Studies were carried out to analyze how different extracellular matrix (ECM) molecules regulate hepatocyte growth and differentiation. Freshly isolated rat hepatocytes were cultured on non-adhesive plastic dishes that were pre-coated with defined densities of either laminin, fibronectin, type I collagen, or type IV collagen. Sparse cell plating densities were used to minimize cell-cell contact formation and all studies were carried out in chemically defined medium that contained a saturating amount of soluble growth factors. Dishes coated with a low ECM density (1 ng/cm2) supported hepatocyte attachment, but did not promote cell spreading or growth. Computerized image analysis confirmed that over 80% of cells remained free of contact with other cells under these conditions. Yet, these round cells maintained high levels of albumin gene expression as well as elevated secretion rates for multiple liver-specific proteins (albumin, transferrin, and fibrinogen), regardless of the type of ECM molecule used for cell attachment. When ECM coating densities were raised from 1 to 1,000 ng/cm2, cell spreading, expression of histone mRNA, DNA synthesis, and cell proliferation all increased in parallel. Activation of growth by high ECM densities was also accompanied by a concomitant down-regulation of differentiated functions and again, dishes coated with all four types of ECM molecules produced similar effects. Thus, the ability to switch hepatocytes from differentiation to growth (i.e., between different genetic programs) is not limited to a single ECM molecule, a distinct three dimensional ECM geometry, or due to alteration of cell-cell interactions. Rather, the regulatory signals conveyed by immobilized ECM molecules depend on the density at which they are presented and thus, on their ability to either prohibit or support cell spreading.  相似文献   

15.
The effect of phorbol esters on the adhesive properties of NIH/3T3 mouse fibroblasts was investigated using plastic substrates precoated with the extracellular matrix proteins fibronectin, collagen, and laminin. Treatment with phorbol 12-myristate 13-acetate (PMA) enhanced NIH/3T3 cell attachment to laminin and type IV collagen substrates but had little or no effect on attachment to fibronectin and type I collagen substrates. The effect of PMA in enhancing cell attachment to laminin and type IV collagen substrates was dose dependent between 10(-9) and 10(-7) M. PMA was effective as early as 30 min; the effect reached a maximum at 2 h and decreased gradually. Phorbol 12, 13-dibenzoate and phorbol 12, 13-diacetate were effective but to a lesser extent and phorbol 12-myristate and phorbol 13-acetate showed little or no effect. These results suggest that PMA may enhance NIH/3T3 cell adhesion through effects on laminin and type IV collagen receptors. Retinoic acid, which itself requires at least 6 h to show an effect on attachment, did not have any effect on cell attachment in 2 h and, if anything, slightly inhibited PMA-enhanced cell attachment to laminin and type IV collagen substrates.  相似文献   

16.
Vascular basement membrane contains laminin, fibronectin, proteoglycan and collagens. These molecules have been identified in various tissues by immunolabeling methods and biochemical analyses. We have previously localized laminin, fibronectin and type IV collagen to the basement membrane of rat retinal vessels at the ultrastructural level using an immunoperoxidase method. In this study, we use an immunogold method to re-examine the distribution of these molecules and also to study the localization of heparan sulfate proteoglycan and types I, III and V collagen in the retinal capillary basement membrane. Gold labeling for laminin, type IV collagen and proteoglycan were found diffusely on the basement membrane of the endothelium and pericyte, while that for fibronectin and type V collagen was spotty and variable and that for types I and III collagen was negligible. The segment of basement membrane between the endothelial cell and pericyte appeared less reactive to anti-laminin and anti-type IV collagen than the membrane between the pericyte and perivascular neuroretina. The immunogold method may be useful in quantitative studies of thickened basement membranes under abnormal conditions.  相似文献   

17.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

18.
The purpose of the present study was to observe the expansion of a monolayer of endothelial cells over specific components of the basement membrane. This was performed in vitro in a monolayer expansion assay over 5 days. The control surface was uncoated glass in the form of coverslips. Test substances were coated at a concentration of 10 μg/ml. The highest expansion was obtained with a high molecular weight fragment mixture of collagen type IV (IV-F, consisting of 75, 120 and 140 KD fragments), followed by fibronectin. Collagens type I, III and IV tetramer gave similar results, less than fibronectin or collagen type IV-F, although all of the above basement membrane coatings promoted expansion significantly above that of the control (P<0.01). The poorest expansion was obtained with laminin, which was significantly less than the control. The pentapeptide GRGDS, related to the fibronectin cell binding region, gave expansion significantly below that of the intact fibronectin molecule, as did the intact collagen type IV molecule compared with type IV-F (P<0.025). This indicates that sequences of the fibronectin molecule other than the cell binding sequence may be involved in promoting endothelial cell expansion. In addition, the integrity of the collagen type IV molecule does not appear necessary for this effect. On the contrary, the higher movement on IV-F may represent an inherent repair mechanism in damaged endothelium. Autoradiographic studies show that endothelial cell proliferation at the expanding front is involved in the migration assay.  相似文献   

19.
The interactions between adult rat cardiac myocytes and the basement membrane components collagen type IV and laminin were investigated in attachment experiments and biosynthesis studies and by immunofluorescence staining. Adult myocytes attached equally well to native collagen type IV and laminin but did not attach to collagen type IV solubilized with pepsin (P-CIV) or to collagen type I. However, when laminin was used to coat P-CIV, attachment was enhanced. Affinity-purified antibodies against laminin inhibited the attachment of myocytes to dishes coated with native collagen type IV, indicating that cell surface-bound laminin mediated attachment of the cells to this substrate. Immunofluorescence staining of freshly isolated myocytes, using antibodies against laminin or collagen type IV, revealed the presence of laminin but not of collagen type IV on the surface of freshly isolated cells, indicating that during the isolation procedure collagen IV was removed from the cell surface. Metabolic labeling followed by immunoprecipitation demonstrated synthesis of both laminin and collagen type IV in cardiac myocytes as they progressed into culture over a 14-day period. This synthesis was accompanied by the deposition of the collagen type IV and laminin into distinctly different patterns as revealed by immunofluorescence staining. As the cells progressed into culture, newly synthesized laminin formed a network radiating from the center of the reorganizing cell into the pseudopods. The laminin was redistributed and remodeled with time in culture to form a dense layer beneath the cell. Collagen type IV was also synthesized with time in culture, but the pattern was a much finer network as opposed to the denser pattern of laminin staining. These studies demonstrate that adult cardiac myocytes synthesize and remodel the basement membrane as they adapt to the culture environment.  相似文献   

20.
Reichert's membrane is a basement membrane deposited on the inner surfaces of rat and mouse trophectodermal (TE) cells beginning at the blastocyst stage of embryonic development that may play a role in the migration of the parietal endodermal (PE) cells to form an inner lining to the TE. The abilities of various glycoproteins present in Reichert's membrane to support PE cell migration and replication in vitro were examined by isolating inner cell masses (ICMs) from Day 5 rat blastocysts (Day 1 = day of vaginal plug) and culturing them (24-72 h) either on surfaces that had been precoated with collagen IV, fibronectin, or laminin or on thin (1-2-mm) gels of Matrigel (a tumor cell-derived basement membrane preparation) or type I collagen. Time-dependent changes in the area occupied by each ICM on the culture surface and the number of migrating cells per ICM were quantified by morphometric analysis. Type IV collagen, the basement membrane-specific collagen, supported ICM attachment and the outward migration (overall increase of approx. 60-fold in mean ICM area occupied on the culture surface) and proliferation (cell doublings following every 24 h of culture) of laminin-containing PE-like cells. These effects were not altered by the inclusion of exogenous fibronectin or laminin in the culture medium. Collagen IV coating concentrations as low as 0.16 micrograms/ml supported PE cell attachment and migration, and maximal responses were seen with a coating concentration of 0.63 micrograms/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号