首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
During interphase, histone amino-terminal tails play important roles in regulating the extent of DNA compaction. Post-translational modifications of the histone tails are intimately associated with regulating chromatin structure: phosphorylation of histone H3 is associated with proper chromosome condensation and dynamics during mitosis, while multiple H2B, H3, and H4 tail acetylations destabilize the chromatin fiber and are sufficient to decondense chromatin fibers in vitro. In this study, we investigate the spatio-temporal dynamics of specific histone H3 phosphorylations and acetylations to better understand the interplay of these post-translational modifications throughout the cell cycle. Using a panel of antibodies that individually, or in combination, recognize phosphorylated serines 10 and 28 and acetylated lysines 9 and 14, we define a series of changes associated with histone H3 that occur as cells progress through the cell cycle. Our results establish that mitosis appears to be a period of the cell cycle when many modifications are highly dynamic. Furthermore, they suggest that the upstream histone acetyltransferases/deacetylases and kinase/phosphatases are temporally regulated to alter their function globally during specific cell cycle time points.  相似文献   

3.
In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post-translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2-T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4-K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.  相似文献   

4.
Role of histone modification in chromatin dynamics   总被引:5,自引:0,他引:5  
  相似文献   

5.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

6.
The roles of histone tails as substrates for reversible chemical modifications and dynamic cognate surfaces for the binding of regulatory proteins are well established. Despite these crucial roles, experimentally derived knowledge of the structure and possible binding sites of histone tails in chromatin is limited. In this study, we utilized molecular dynamics of isolated histone H3 N-terminal peptides to investigate its structure as a function of post-translational modifications that are known to be associated with defined chromatin states. We observed a structural preference for α-helices in isoforms associated with an inactive chromatin state, while isoforms associated with active chromatin states lacked α-helical content. The physicochemical effect of the post-translational modifications was highlighted by the interaction of arginine side-chains with the phosphorylated serine residues in the inactive isoform. We also showed that the isoforms exhibit different tail lengths, and, using molecular docking of the first 15 N-terminal residues of an H3 isoform, identified potential binding sites between the superhelical gyres on the octamer surface, close to the site of DNA entry/exit in the nucleosome. We discuss the possible functional role of the binding of the H3 tail within the nucleosome on both nucleosome and chromatin structure and stability.  相似文献   

7.
Postnikov YV  Belova GI  Lim JH  Bustin M 《Biochemistry》2006,45(50):15092-15099
Here we demonstrate that HMGN1, a nuclear protein that binds specifically to nucleosomes, modulates the level of histone H2A phosphorylation. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of H2AS1ph throughout the cell cycle. In vitro, HMGN1 reduces the rate of Rsk2- and Msk1-mediated phosphorylation of nucleosomal, but not free, histone H2A. HMGN1 inhibits H2A phosphorylation by binding to nucleosomes since an HMGN mutant, which cannot bind to chromatin, does not inhibit the Rsk2- mediated H2A phosphorylation. HMGN2 also inhibits H2A phosphorylation, suggesting that the inhibition of H2A phosphorylation is not specific to only one member of this protein family. Thus, the present data add modifications of histone H2A to the list of histone modifications affected by HMGN proteins. It supports the suggestion that structural chromatin binding proteins can modify the whole profile of post-translational modifications of core histones.  相似文献   

8.
9.
10.
Histone acetylation in gene regulation.   总被引:3,自引:0,他引:3  
Genetic information is packaged in the highly dynamic nucleoprotein structure called chromatin. Many biological processes are regulated via post-translational modifications of key proteins. Acetylation of lysine residues at the N-terminal histone tails is one of the most studied covalent modifications influencing gene regulation in eukaryotic cells. This review focuses on the role of enzymes involved in controlling both histone and non-histone proteins acetylation levels in the cell, with particular emphasis on their effects on cancer.  相似文献   

11.
The core histone tail domains are key regulatory elements in chromatin. The tails are essential for folding oligonucleosomal arrays into both secondary and tertiary structures, and post-translational modifications within these domains can directly alter DNA accessibility. Unfortunately, there is little understanding of the structures and interactions of the core histone tail domains or how post-translational modifications within the tails may alter these interactions. Here we review NMR, thermal denaturation, cross-linking, and other selected solution methods used to define the general structures and binding behavior of the tail domains in various chromatin environments. All of these methods indicate that the tail domains bind primarily electrostatically to sites within chromatin. The data also indicate that the tails adopt specific structures when bound to DNA and that tail structures and interactions are plastic, depending on the specific chromatin environment. In addition, post-translational modifications, such as acetylation, can directly alter histone tail structures and interactions.  相似文献   

12.
13.
Histones are subject to numerous post-translational modifications that correlate with the state of higher-order chromatin structure and gene expression. However, it is not clear whether changes in these epigenetic marks are causative regulatory factors in chromatin structure changes or whether they play a mainly reinforcing or maintenance role. In Drosophila phosphorylation of histone H3S10 in euchromatic chromatin regions by the JIL-1 tandem kinase has been implicated in counteracting heterochromatization and gene silencing. Here we show, using a LacI-tethering system, that JIL-1 mediated ectopic histone H3S10 phosphorylation is sufficient to induce a change in higher-order chromatin structure from a condensed heterochromatin-like state to a more open euchromatic state. This effect was absent when a ;kinase dead' LacI-JIL-1 construct without histone H3S10 phosphorylation activity was expressed. Instead, the 'kinase dead' construct had a dominant-negative effect, leading to a disruption of chromatin structure that was associated with a global repression of histone H3S10 phosphorylation levels. These findings provide direct evidence that the epigenetic histone tail modification of H3S10 phosphorylation at interphase can function as a causative regulator of higher-order chromatin structure in Drosophila in vivo.  相似文献   

14.
Chromosomal histone modification patterns--from conservation to diversity   总被引:1,自引:0,他引:1  
The organization of DNA into chromatin regulates expression and maintenance (replication, repair, recombination, segregation) of genetic information in a dynamic manner. The N-terminal tails of the nucleosomal core histones are subjected to post-translational modifications such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, ADP-ribosylation, carbonylation and sumoylation. These modifications, together with DNA methylation, control the folding of the nucleosomal array into higher order structures and mediate signalling for cellular processes. Although histones and their modifications are highly conserved, recent data show that chromosomal distribution of individual modifications (acetylation, methylation, phosphorylation) can differ along the cell cycle as well as among and between groups of eukaryotes. This implies the possibility of evolutionary divergence in reading the "histone code".  相似文献   

15.
Clipping of histone tails has been reported in several organisms. However, the significance and regulation of histone tail clipping largely remains unclear. According to recent discoveries H3 clipping has been found to be involved in regulation of gene expression and chromatin dynamics. Earlier we had provided evidence of tissue-specific proteolytic processing of histone H3 in White Leghorn chicken liver nuclei. In this study we identify a novel activity of glutamate dehydrogenase (GDH) as a histone H3-specific protease in chicken liver tissue. This protease activity is regulated by divalent ions and thiol-disulfide conversion in vitro. GDH specifically clips H3 in its free as well as chromatin-bound form. Furthermore, we have found an inhibitor that inhibits the H3-clipping activity of GDH. Like previously reported proteases, GDH too may have the potential to regulate/modulate post-translational modifications of histone H3 by removing the N-terminal residues of the histone. In short, our findings identify an unexpected proteolytic activity of GDH specific to histone H3 that is regulated by redox state, ionic concentrations, and a cellular inhibitor in vitro.  相似文献   

16.
17.
The epigenome is defined as a type of information that can be transmitted independently of the DNA sequence, at the chromatin level, through post-translational modifications present on histone tails. Recent advances in the identification of histone 3 variants suggest a new model of information transmission through deposition of specific histone variants. To date, several non-centromeric histone 3 variants have been identified in mammals. Despite protein sequence similarity, specific deposition complexes have been characterized for both histone 3.1 (H3.1) and histone 3.3 (H3.3), whereas no deposition complex for histone 3.2 (H3.2) has been identified to date. Here, we identified human H3.2 partners by immunopurification of nuclear H3.2 complexes followed by mass spectrometry analysis. Further biochemical analyses highlighted two major complexes associated with H3.2, one containing chromatin associated factor-1 subunits and the other consisting of a subcomplex of mini chromosome maintenance helicases, together with Asf1. The purified complexes could associate with a DNA template in vitro.  相似文献   

18.
Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号