首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.  相似文献   

2.
The formin family of proteins promotes the assembly of linear actin filaments in the cells of diverse eukaryotic organisms. The predominant formins in mammalian cells are self‐inhibited by an intramolecular interaction between two terminal domains and are activated by the binding of the Rho GTPases and other factors. In this study, we show that Bni1p, a formin required for the assembly of actin cables in budding yeast, is also regulated by an autoinhibitory mechanism and phosphorylation by the actin regulatory kinase Prk1p, and possibly Ark1p as well, plays a key role in unlocking the inhibition. Bni1p is phosphorylated by Prk1p at three [L/V/I]xxxxTG motifs in vitro, and the phosphorylation is sufficient to activate Bni1p by disrupting its intramolecular interaction. This finding extends the roles of Prk1p in the regulation of actin dynamics to be associated with both anterograde and retrograde transport pathways, i.e. exocytosis and endocytosis, in yeast.  相似文献   

3.
We seek to understand how the nerve growth cone acts as a sensory motile machine to respond to chemical cues in the developing embryo. This review focuses on filopodial protrusion and F-actin-based motility because there is good evidence that these processes are required for axon guidance. The clutch hypothesis, which states that filopodial protrusion occurs by actin assembly when an actin filament is fixed with respect to the substrate (i.e., a clutch is engaged), was postulated by Mitchison and Kirscher to link protrusion to actin dynamics. Protrusion would require functional modules for movement of material into filopodia, clutching the F-actin, F-actin assembly at the tip, and retrograde flow. In this review, recent studies of actin-associated proteins involved in filopodial protrusion will be summarized, and their roles will be assessed in the context of the clutch hypothesis. The large number of proteins involved in filopodial motility and their complex interactions make it difficult to understand how these proteins act in protrusion. Recently, we have used microscale chromophore-assisted laser inactivation (micro-CALI) for the focal and acute inactivation of specific actin-associated proteins during filopodial protrusion to address their in situ roles. Our findings suggest that myosin V functions in moving membranes or other material forward in extending filopodia, that talin acts in the clutch module, and that zyxin acts in actin assembly at the tip during filopodial protrusion, perhaps by recruiting Ena/VASP family members to promote actin elongation at this site.  相似文献   

4.
Calponins and transgelins are members of a conserved family of actin-associated proteins widely expressed from yeast to humans. Although a role for calponin in muscle cells has been described, the biochemical activities and in vivo functions of nonmuscle calponins and transgelins are largely unknown. Herein, we have used genetic and biochemical analyses to characterize the budding yeast member of this family, Scp1, which most closely resembles transgelin and contains one calponin homology (CH) domain. We show that Scp1 is a novel component of yeast cortical actin patches and shares in vivo functions and biochemical activities with Sac6/fimbrin, the one other actin patch component that contains CH domains. Purified Scp1 binds directly to filamentous actin, cross-links actin filaments, and stabilizes filaments against disassembly. Sequences in Scp1 sufficient for actin binding and cross-linking reside in its carboxy terminus, outside the CH domain. Overexpression of SCP1 suppresses sac6Delta defects, and deletion of SCP1 enhances sac6Delta defects. Together, these data show that Scp1 and Sac6/fimbrin cooperate to stabilize and organize the yeast actin cytoskeleton.  相似文献   

5.
The coronin family of actin-associated proteins.   总被引:18,自引:0,他引:18  
Coronin was first isolated from Dictyostelium, but similar proteins have been identified in many species and individual cell types. The coronin-like protein in yeast promotes actin polymerization and also interacts with microtubules. Dictyostelium mutants lacking coronin are impaired in cytokinesis and all actin-mediated processes. Analysis of coronin-GFP (green-fluorescent protein) fusions and knockout mutants shows that coronin participates in the remodelling of the cortical actin cytoskeleton that is responsible for phagocytosis and macropinocytosis. Likewise, in mammalian neutrophils, a coronin-like protein is also associated with the phagocytic apparatus. The diversity of function in this family of actin-associated proteins is just beginning to be explored.  相似文献   

6.
Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.  相似文献   

7.
Molecular genetic studies of endocytosis using the unicellular eukaryote Saccharomyces cerevisiae (budding yeast) have led to the identification of many cellular components, both proteins and lipids, required for this process. While initially, many of these requirements (e.g. for actin, various actin-associated proteins, the ubiquitin conjugation system, and for ergosterol and sphingolipids) appeared to differ from known requirements for endocytosis in higher eukaryotes (e.g. clathrin, AP-2, dynamin), it now seems that endocytosis in higher and lower eukaryotes share many requirements. Often, what were initially identified as actin cytoskeleton-associated proteins in S. cerevisiae, are now revealing themselves as clathrin-coated pit- and vesicle-associated proteins in higher eukaryotes. So rather than delineating two endocytic pathways, one actin-based and one clathrin-based, the combined studies on higher and lower eukaryotes are revealing interesting interplay in both systems between the actin cytoskeleton, clathrin coats, and lipids in the formation of endocytic vesicles at the plasma membrane. Recent results from the yeast system show that the Arp2/3p complex, Wiskott-Aldrich syndrome protein (WASP), and WASP-interacting protein (WIP), proteins involved in the nucleation step of actin filament assembly, play a major role in the formation of endocytic vesicles. This discovery suggests models whereby endocytic vesicles may be actively pushed from the plasma membrane and into the cell by newly forming and rapidly extending actin filaments.  相似文献   

8.
Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.  相似文献   

9.
Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament–forming protein formin and branched network–forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.  相似文献   

10.
Smooth muscle cells have developed a contractile machinery that allows them to exert tension on the surrounding extracellular matrix over their entire length. This has been achieved by coupling obliquely organized contractile filaments to a more-or-less longitudinal framework of cytoskeletal elements. Earlier structural data suggested that the cytoskeleton was composed primarily of intermediate filaments and played only a passive role. More recent findings highlight the segregation of actin isotypes and of actin-associated proteins between the contractile and cytoskeletal domains and raise the possibility that the cytoskeleton performs a more active function. Current efforts focus on defining the relative contributions of myosin cross-bridge cycling and actin-associated protein interactions to the maintenance of tension in smooth muscle tissue.  相似文献   

11.
Pan1p is an essential protein of the yeast Saccharomyces cerevisiae that is required for the internalization step of endocytosis and organization of the actin cytoskeleton. Pan1p, which binds several other endocytic proteins, is composed of multiple protein-protein interaction domains including two Eps15 Homology (EH) domains, a coiled-coil domain, an acidic Arp2/3-activating region, and a proline-rich domain. In this study, we have induced high-level expression of various domains of Pan1p in wild-type cells to assess the dominant consequences on viability, endocytosis, and actin organization. We found that the most severe phenotypes, with blocked endocytosis and aggregated actin, required expression of nearly full length Pan1p, and also required the endocytic regulatory protein kinase Prk1p. The central coiled-coil domain was the smallest fragment whose overexpression caused any dominant effects; these effects were more pronounced by inclusion of the second EH domain. Co-overexpressing nonoverlapping amino- and carboxy-terminal fragments did not mimic the effects of the intact protein, whereas fragments that overlapped within the coiled-coil region could. Yeast two-hybrid and in vivo coimmunoprecipitation analyses suggest that Pan1 may form dimers or higher order oligomers. Collectively, our data support a view of Pan1p as a dimeric/oligomeric scaffold whose functions require both the amino- and carboxy-termini, linked by the central region.  相似文献   

12.
Cofilin/ADF is a ubiquitous actin-binding protein that is important for rapid actin dynamics in vivo. The long alpha-helix (helix 3 in yeast cofilin) forms the most highly conserved region in cofilin/ADF proteins, and residues in the NH2-terminal half of this alpha-helix have been shown to be essential for actin binding in cofilin/ADF. Recent studies also suggested that the basic residues in the COOH-terminal half of this alpha-helix would play an important role in F-actin binding. In contrast to these studies, we show here that the charged residues in the COOH-terminal half of helix 3 are not important for actin filament binding in yeast cofilin. Mutations in these residues, however, result in a small defect in actin monomer interactions. We also show that yeast cofilin can differentiate between various phosphatidylinositides, and mapped the PI(4,5)P2 binding site by using a collection of cofilin mutants. The PI(4,5)P2 binding site of yeast cofilin is a large positively charged surface that consists of residues in helix 3 as well as residues in other parts of the cofilin molecule. This suggests that cofilin/ADF proteins probably interact simultaneously with more than one PI(4,5)P2 molecule. The PI(4,5)P2-binding site overlaps with areas that are important for F-actin binding, explaining why the actin-related activities of cofilin/ADF are inhibited by PI(4,5)P2. The biological roles of actin and PI(4,5)P2 interactions of cofilin are discussed in light of phenotypes of specific yeast strains carrying mutations in residues that are important for actin and PI(4,5)P2 binding.  相似文献   

13.
Based on the premise that cell-surface proteins involved in focal or close cell-to-substrate contact will be linked across the membrane, either directly or indirectly to F-actin of the cytoskeleton, we have used a modification of the myosin affinity technique (Leonardi, C L & Rubin, R W, Anal biochem 118 (1981) 58) to precipitate F-actin filaments and associated proteins from Nonidet P-40 solubilized cells. BALB/c 3T3 fibroblasts, which have close and focal contacts, and their adhesion-defective mutant, AD6, which has only close contacts were compared. Clarified cell homogenates were incubated with rabbit muscle myosin thick filaments and were pelleted. Supernatants obtained from successive washes of the pellets, before and after release of actin and associated proteins by adenosine triphosphate, were analysed by gel electrophoresis under reducing conditions. The metabolic origin of the actin-associated proteins was determined by [35S]methionine labelling of BALB/c 3T3 cells. By these methods, 38 and 57 kD proteins were found to be actin-associated in BALB/c 3T3 but not in AD6. Biochemically reverting AD6 to the BALB/c 3T3 phenotype restored focal contacts and the association of the 38 and 57 kD proteins to actin, further implying roles for the proteins in the focal contact. Proteins of 48 and 145 kD were actin-associated in all three cell types indicating a potential role for these proteins in the close contact.  相似文献   

14.
Herein we report that Gts1p fused with green-fluorescent protein (GFP) is localized in the cortical actin patch besides nuclei in yeast and the cortical Gts1p changed its position together with the patch depending on the cell-cycle phase, while nuclear Gts1p accumulated predominantly in the budding phase. Whereas Gts1p does not directly bind to actin, it associated mainly with the actin-associated protein Pan1p. In the GTS1-deleted transformant gts1Delta, the number of cells containing either a fragmented vacuole or an enlarged single central vacuole increased and the uptake of the hydrophilic dye Lucifer yellow (LY) in the vacuole decreased. Further, gts1Delta transformed with a mutant Gts1p having two cysteine-to-alanine substitutions in a zinc finger resembling that of GTPase-activating proteins of ADP-ribosylation factors (ARF-GAP) neither recovered the LY uptake unlike gts1Delta transformed with the wild-type GTS1, nor reduced the average size of central vacuoles as much as the latter did. These results suggested that Gts1p in the actin patch is involved in the fluid-phase endocytosis and membrane trafficking for vacuole formation and that the putative ARF-GAP domain in Gts1p plays an important role in these functions.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.  相似文献   

16.
《The Journal of cell biology》1989,109(6):2963-2975
By using F-actin affinity chromatography columns to select proteins solely by their ability to bind to actin filaments, we have identified and partially purified greater than 40 proteins from early Drosophila embryos. These proteins represent approximately 0.5% of the total protein present in soluble cell extracts, and 2 mg are obtained by chromatography of an extract from 10 g of embryos. As judged by immunofluorescence of fixed embryos, 90% of the proteins that we have detected in F-actin column eluates are actin-associated in vivo (12 of 13 proteins tested). The distributions of antigens observed suggest that groups of these proteins cooperate in generating unique actin structures at different places in the cell. These structures change as cells progress through the cell cycle and as they undergo the specializations that accompany development. The variety of different spatial localizations that we have observed in a small subset of the total actin-binding proteins suggests that the actin cytoskeleton is a very complex network of interacting proteins.  相似文献   

17.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance (Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain (NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein. Electronic Publication  相似文献   

18.
Actin contains four tryptophan residues, W79, W86, W340, and W356, all located in subdomain 1 of the protein. Replacement of each of these residues with either tyrosine (W79Y and W356Y) or phenylalanine (W86F and W340F) generated viable proteins in the yeast Saccharomyces cerevisiae, which, when purified, allowed the analysis of the contribution of these residues to the overall tryptophan fluorescence of actin. The sum of the relative contributions of these tryptophans was found to account for the intrinsic fluorescence of wild-type actin, indicating that energy transfer between the tryptophans is not the main determinant of their quantum yield, and that these mutations induce little conformational change to the protein. This was borne out by virtually identical polymerization rates and similar myosin interactions of each of the mutants and the wild-type actin. In addition, these mutants allowed the dissection of the microenvironment of each tryptophan as actin undergoes conformational changes upon metal cation exchange and polymerization. Based on the relative tryptophan contributions determined from single mutants, a triple mutant of yeast actin (W79) was generated that showed small intrinsic fluorescence and should be useful for studies of actin interactions with actin-binding proteins.  相似文献   

19.
Ayscough KR 《Protoplasma》2005,226(1-2):81-88
Summary. Endocytosis is an essential eukaryotic process that, in many systems, has been reported to require a functional actin cytoskeleton. The process of endocytosis is critical for controlling the protein–lipid composition of the plasma membrane and uptake of nutrients as well as pathogens and also plays an important role in regulation of cell signalling. While several distinct pathways for endocytosis have been characterised, all of these require remodelling of the cell cortex. The importance of a dynamic actin cytoskeleton for facilitating endocytosis has been recognised for many years in budding yeast and is increasingly supported by studies in mammalian cells. Current evidence suggests that cortical patches are sites of endocytosis in Saccharomyces cerevisiae and that these sites are composed of sequentially forming protein complexes. Distinct stages in complex formation are characterised by the presence of different activators of F-actin polymerisation. Disassembly of the complexes is also essential for the endocytosis to proceed. Mutants lacking the kinases Ark1 and Prk1 accumulate actin and endocytic machinery in a single large clump in cells. Phosphorylation of endocytic proteins including Sla1p is proposed to cause their removal from the complex and allow later stages of the invagination process to occur. Dephosphorylation of endocytic components may then allow subsequent reincorporation into new sites of endocytic complex assembly. Correspondence and reprints: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.  相似文献   

20.
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号