首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic mapping of the Salmonella typhimurium pncB locus.   总被引:2,自引:1,他引:1       下载免费PDF全文
The nicotinic acid phosphoribosyltransferase locus pncB was located on the Salmonella typhimurium linkage map counterclockwise relative to pyrC. P22 and P1 transductional analyses revealed linkage of pncB with aroA and pyrD, indicating a pncB map position of approximately 20 map units. The results of these cotransduction experiments also indicated that the genetic map distance between gal and pyrD is greater than the published 2.2 map units.  相似文献   

2.
Genetic mapping of the Salmonella typhimurium pepB locus.   总被引:2,自引:1,他引:1       下载免费PDF全文
Transposon technology has been used to map the pepB locus of Salmonella typhimurium. This locus is cotransducible by phage P22 with glyA and strB at min 56 on the Salmonella genetic map. The gene order is strB pepB glyA.  相似文献   

3.
Genetic mapping of the dentinogenesis imperfecta type II locus.   总被引:1,自引:0,他引:1       下载免费PDF全文
Dentinogenesis imperfecta type II (DGI-II) is an autosomal dominant disorder of dentin formation, which has previously been mapped to chromosome 4q12-21. In the current study, six novel short tandem-repeat polymorphisms (STRPs) have been isolated, five of which show significant evidence of linkage to DGI-II. To determine the order of the STRPs and define the genetic distance between them, nine loci (including polymorphisms for two known genes) were mapped through the CEPH reference pedigrees. The resulting genetic map encompasses 16.3 cM on the sex-averaged map. To combine this map with a physical map of the region, all of the STRPs were mapped through a somatic cell hybrid panel. The most likely location for the DGI-II locus within the fixed marker map is in the D4S2691-D4S2692 interval of 6.6 cM. The presence of a marker that shows no recombination with the DGI-II phenotype between the flanking markers provides an important anchor point for the creation of physical continuity across the DGI-II candidate region.  相似文献   

4.
Myodystrophy (myd), an autosomal recessive mutation of the mouse characterized by progressive weakness and dystrophic muscle histology, maps to the central portion of Chromosome (Chr) 8 (Lane et al. J. Hered 67, 135, 1976). This portion of Chr 8 contains the genes for a mitochondrial uncoupling protein (Ucp) and kallikrein (Kal3), which map to distal 4q in the human, providing evidence for a segment of homology. Characteristics of the myd phenotype coupled with this homology suggest that myd may be a mouse homolog of facioscapulohumeral muscular dystrophy (FSHD), which maps to human 4q35. We have confirmed and expanded the region of mouse 8-human 4 homology by generating a map of Chr 8 in an interspecific backcross of C57BL/6J and a partially inbred strain derived from M. spretus. The map is comprised of the genes for Ucp, coagulation factor XI (Cf11), and chloride channel 5 (Clc5), all of which have homologs on distal human 4q, 15 microsatellite loci, and the membrane cofactor protein pseudogene (Mcp-ps). To place myd in the genetic map, 75 affected progeny from an intersubspecific backcross of animals heterozygous for myd with Mus musculus castaneus were genotyped with Chr 8 microsatellite loci. The mutation maps between D8Mit30 and D8Mit75, an interval that is flanked by genes with human homologs at distal 4q. These results are consistent with the possibility that myd is the mouse homolog of FSHD.  相似文献   

5.
Summary The SMO genetic locus in strains of the fungus Magnaporthe grisea that infect weeping lovegrass, directs the formation of correct cell shapes in asexual spores, infection structures, and asci. We have identified and characterized a Smo strain of M. grisea that infects rice. The smo mutation in this strain segregates as a single gene mutation and is allelic to previously identified smo alleles. A marked reduction in pathogenicity co-segregates with the Smo phenotype, suggesting that the SMO locus plays a role in rice pathogenicity. A family of dispersed repeated DNA sequences, called MGR, have been discovered in the nuclear DNA of M. grisea rice pathogens. Genetic crosses between Smo rice pathogens and Smo+ non-rice pathogens were used to follow the segregation of the SMO locus and individual MGR sequences. Using DNA blot analysis with cloned MGR hybridization probes, we mapped the SMO locus to a chromosomal region flanked by two closely linked MGR sequences. We demonstrated that the copy number of MGR sequences could be reduced in subsequent crosses to non-rice pathogens of M. grisea, and that new MGR sequences did not occur following meiosis indicating that these sequences are stable in the genome. We conclude that restriction fragment polymorphism mapping with cloned MGR sequences as hybridization probes is an effective way to map genes in the rice blast fungus.  相似文献   

6.
Cnr (Colourless non-ripening) is a dominant pleiotropic ripening mutation of tomato (Lycopersicon esculentum) which has previously been mapped to the proximal region of tomato chromosome 2. We describe the fine mapping of the Cnr locus using both linkage analysis and fluorescence in situ hybridisation (FISH). Restriction fragment length polymorphism (RFLP)-, amplified restriction fragment polymorphism (AFLP)-, and cleaved amplified polymorphic sequence (CAPS)-based markers, linked to the Cnr locus were mapped onto the long arm of chromosome 2. Detailed linkage analysis indicated that the Cnr locus was likely to lie further away from the top of the long arm than previously thought. This was confirmed by FISH, which was applied to tomato pachytene chromosomes in order to gain an insight into the organisation of hetero- and euchromatin and its relationship to the physical and genetic distances in the Cnr region. Three molecular markers linked to Cnr were unambiguously located by FISH to the long arm of chromosome 2 using individual BAC probes containing these single-copy sequences. The physical order of the markers coincided with that established by genetic analysis. The two AFLP markers most-closely linked to the Cnr locus were located in the euchromatic region 2.7-cM apart. The physical distance between these markers was measured on the pachytene spreads and estimated to be approximately 900 kb, suggesting a bp:cM relationship in this region of chromosome 2 of about 330 kb/cM. This is less than half the average value of 750 kb/cM for the tomato genome. The relationship between genetic and physical distances on chromosome 2 is discussed. Received: 11 January 2001 / Accepted: 30 April 2001  相似文献   

7.
8.
Tomato plants homozygous for the recessive lateral suppressor (ls) mutation show a number of phenotypic abnormalities among which the lack of lateral meristem initiation during vegetative growth and the absence of petals on the flower are the most prominent. As a first step towards the isolation of the Ls gene by means of map-based cloning, we have determined its position on the restriction fragment length polymorphism (RFLP) map of tomato. RFLP analysis of 527 F2 plants segregating for the ls allele allowed us to define an interval of 0.8 cM in which the Ls gene is located. Analysis of the physical distance between the two flanking RFLP markers by pulsed field gel electrophoresis revealed that they lie no further than 375 kb apart. Knowledge of the physical distance together with the availability of a tomato yeast artificial chromosome (YAC) library, makes it feasible to isolate the Ls gene by a map-based cloning approach.  相似文献   

9.
The genetic location of tmk, the gene for dTMP kinase, has been mapped at min 24.0 on the Escherichia coli map.  相似文献   

10.
The deployment in common beans (Phaseolus vulgaris L.) of arcelin-based bruchid resistance could help reduce post-harvest storage losses to the Mexican bean weevil [(Zabrotes subfasciatus (Boheman)]. Arcelin is a member of the arcelin-phytohemagglutinin-α-amylase inhibitor (APA) family of seed proteins, which has been extensively studied but not widely used in bean breeding programs. The purpose of this study was to evaluate microsatellite markers for genetic analysis of arcelin-based bruchid resistance and to determine the orientation of markers and the rate of recombination around the APA locus. A total of 10 previously developed microsatellites and 22 newly developed markers based on a sequenced BAC from the APA locus were screened for polymorphism and of these 15 were mapped with an F2 population of 157 individuals resulting from a susceptible × resistant cross of SEQ1006 × RAZ106 that segregated for both the arcelin 1 allele and resistance to the bruchid, Z. subfasciatus. Microsatellites derived from APA gene sequences were linked within 0.8 cM of each other and were placed relative to the rest of the b04 linkage group. In a comparison of genetic to physical distance on the BAC sequence, recombination was found to be moderate with a ratio of 125 kb/cM, but repressed within the APA locus itself. Several markers were predicted to be very effective for genetic studies or marker-assisted selection, based on their significant associations with bruchid resistance and on low adult insect emergence and positions flanking the arcelin and phytohemagglutinin genes.  相似文献   

11.
Conjugation systems that transfer antibiotic resistance in the absence of detectable plasmids are common in Bacteroides, but the mechanism of transfer is poorly understood. We found that linked transfer of tetracycline (TcR) and clindamycin (ClR) resistance by Bacteroides fragilis strain 1126 is induced by growth in either Tc or Cl. We cloned the transferable TcR locus as a 13 kb fragment on the shuttle vector pPH6 in Escherichia coli and showed that this region expresses TcR in Bacteroides but not E. coli. The TcR gene was mapped to a 3 kb region and the ClR gene was shown not to be present in the 13 kb insert. Homologous TcR genes are found in B. fragilis V479 and 1792. Using pulsed-field electrophoresis, the transferable TcR gene was shown to be physically associated with high molecular-weight DNA, suggesting that it is located on the chromosome. A new TcR shuttle vector, pPH7 delta 1.1, was constructed to facilitate use of this selective marker in Bacteroides genetics.  相似文献   

12.
Albinism in animals is generally a recessive trait, but in Japan a dominant oculocutaneous albino (OCA) mutant strain has been isolated in rainbow trout (Oncorhyncus mykiss). After confirming that this trait is not due to a tyrosinase gene mutation that causes OCA1 (tyrosinase-negative OCA), we combined the amplified fragment length polymorphism (AFLP) technique with bulked segregant analysis (BSA) to map the gene involved in dominant oculocutaneous albinism. Four AFLP markers tightly linked to the dominant albino locus were identified. One of these markers was codominant and we have it converted into a GGAGT-repeat microsatellite marker, OmyD-AlbnTUF. Using this pentanucleotide-repeat DNA marker, the dominant albino locus has been mapped on linkage group G of a reference linkage map of rainbow trout. The markers identified here will facilitate cloning of the dominant albino gene in rainbow trout and contribute to a better understanding of tyrosinase-negative OCA in animals.  相似文献   

13.
The locus for 21-hydroxylase (CA21HB) has been mapped to the interval between the HLA-B and HLA-DR loci on chromosome 6. Several methods of estimating genetic distance were used to determine whether CA21HB is closer to HLA-B or HLA-DR based on data collected on 157 families ascertained through a proband with the classical form of 21-hydroxylase deficiency (CA12Hd). The results were inconclusive but serve to highlight the limitations of present methods of estimating genetic distance when recombination frequencies are of the order of .005.  相似文献   

14.
A biotinylated probe of the Adh (alcohol dehydrogenase) gene of Drosophila melanogaster was used for in situ hybridization on polytene chromosomes of D. mojavensis and D. buzzatii, two species of the repleta group of the genus Drosophila. Hybridization showed that the Adh gene maps at the G1a band of the third chromosome. This is in accordance with a previous result obtained through the use of interspecific hybrid asynapsis as a cytological marker and establishes the limits of the precision of this method.  相似文献   

15.
Loquat canker disease, caused by Pseudomonas syringae pv. eriobotryae, is one of the most harmful diseases of commercial cultivars of loquat (Eriobotrya japonica). To introgress resistance to loquat canker, we identified the linkage group and position of the resistance locus derived from the related wild species bronze loquat (Eriobotrya deflexa). The segregation of resistance and susceptibility fit the expected ratio of 1:1 in 96 individuals from a three-way cross involving bronze loquat (heterozygous for resistance) and two cultivars of loquat (susceptible). The genomic region containing Pse-a was identified by using a genome scanning approach, and the loquat canker resistance locus was mapped at the top of linkage group 10 by applying novel simple sequence repeat (SSR) markers designed on the basis of the ‘Golden Delicious’ apple genome sequence. The constructed linkage group spans 69.4 cM and has an average marker density of 2.6 cM per marker. The developed molecular markers tightly linked to the loquat canker resistance locus will be useful for marker-assisted selection and for introgression of resistance into loquat in breeding programs.  相似文献   

16.
Gametophytic self-incompatibility (SI) possessed by the Solanaceae is controlled by a highly polymorphic locus called the S locus. The S locus contains two linked genes, S-RNase, which determines female specificity, and the as yet unidentified pollen S gene, which determines male specificity in SI interactions. To identify the pollen S gene of Petunia inflata, we had previously used mRNA differential display and subtractive hybridization to identify 13 pollen-expressed genes that showed S -haplotype-specific RFLP. Here, we carried out recombination analysis of 1205 F2 plants to determine the genetic distance between each of these S -linked genes and S-RNase. Recombination was observed between four of the genes (3.16, G211, G212, and G221) and S-RNase, whereas no recombination was observed for the other nine genes (3.2, 3.15, A113, A134, A181, A301, G261, X9, and X11). A genetic map of the S locus was constructed, with 3.16 and G221 delimiting the outer limits. None of the observed crossovers disrupted SI, suggesting that all the genes required for SI are contained in the chromosomal region defined by 3.16 and G221. These results and our preliminary chromosome walking results suggest that the S locus is a huge multi-gene complex. Allelic sequence diversity of G221 and 3.16, as well as of 3.2, 3.15, A113, A134 and G261, was determined by comparing two or three alleles of their cDNA and/or genomic sequences. In contrast to S-RNase, all these genes showed very low degrees of allelic sequence diversity in the coding regions, introns, and flanking regions.  相似文献   

17.
The female gametophyte is an absolutely essential structure for angiosperm reproduction, and female sterility has been reported in a number of crops. In this paper, a maximum-likelihood method is presented for estimating the position and effect of a female partial-sterile locus in a backcross population using the observed data of dominant or codominant markers. The ML solutions are obtained via Bailey’s method. The process for the estimating of the recombination fractions and the viabilities of female gametes are described, and the variances of the estimates of the parameters are also presented. Application of the method is demonstrated using a set of simulated data. This method circumvents the problems of the traditional mapping methods for female sterile genes which were based on data from seed set or embryo-sac morphology and anatomy.  相似文献   

18.
Camurati-Engelmann disease (CED [MIM 131300]), or progressive diaphyseal dysplasia, is an autosomal dominant sclerosing bone dysplasia characterized by progressive bone formation along the periosteal and endosteal surfaces at the diaphyseal and metaphyseal regions of long bones and cranial hyperostosis, particularly at the skull base. The gene for CED, or its chromosomal localization, has not yet been identified. We performed a genomewide linkage analysis of two unrelated Japanese families with CED, in which a total of 27 members were available for this study; 16 of them were affected with the disease. Two-point linkage analysis revealed a maximum LOD score of 7.41 (recombination fraction.00; penetrance 1.00) for the D19S918 microsatellite marker locus. Haplotype analysis revealed that all the affected individuals shared a common haplotype observed, in each family, between D19S881 and D19S606, at chromosome 19q13.1-q13.3. These findings, together with a genetic distance among the marker loci, indicate that the CED locus can be assigned to a 15.1-cM segment between D19S881 and D19S606.  相似文献   

19.
Summary Using C-banding it has been possible to prove that the bread wheat varieties Holdfast and CapelleDesprez shows an intense band of telomeric heterochromatin on the short arm of chromosome 1B, while the variety Pané-247 presents a very thin band. Gliadin study using pH-acid electrophoresis revealed the existence of differences in the Gli-B1 locus in the three varieties. Analysis of the progeny of the (P x H) x CD hybrid revealed recombination between the heterochromatin C-band and locus Gli-B1, and allowed the genetic distance between the two markers to be calculated as 6.55±3.16 cMorgan. This is the first time the genetic distance from a locus to the chromosome telomere has been directly obtained in wheat. The heterochromatin C-band studied here gives us a cytological marker on chromosome 1B that can be used as a reference point in the localization of other genes.  相似文献   

20.
Backcross progeny, (NC X TF/GnLe)F1 X TF/GnLe, was tested for C3 allotype controlled by C3-1 and the expression of mutant gene tf, repeated loss and regrowth of hair. The recombination frequency between these two loci both located in chromosome 17 of the mouse was 24%. Taken together with our previous linkage data, C3-1 is now localized to a position 11 cm more distal than H-2 on chromosome 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号