首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously shown that the tobacco cyclin B1;1 protein accumulates during the G2 phase of the cell cycle and is subsequently destroyed during mitosis. Here, we investigated the sub-cellular localisation of two different B1-types and one A3-type cyclin during the cell cycle by using confocal imaging and differential interference contrast (DIC) microscopy. The cyclins were visualised as GFP-tagged fusion proteins in living tobacco cells. Both B1-type cyclins were found in the cytoplasm and in the nucleus during G2 but when cells entered into prophase, both cyclins became associated with condensing chromatin and remained on chromosomes until metaphase. As cells exited metaphase, the B1-type cyclins became degraded, as shown by time-lapse images. A stable variant of cyclin B1;1-GFP fusion protein, in which the destruction box had been mutated, maintained its association with the nuclear material at later phases of mitosis such as anaphase and telophase. Furthermore, we demonstrated that cyclin B1;1 protein is stabilised in metaphase-arrested cells after microtubule destabilising drug treatments. In contrast to the B1-type cyclins, the cyclin A3;1 was found exclusively in the nucleus in interphase cells and disappeared earlier than the cyclin B1 proteins during mitosis.  相似文献   

2.
BACKGROUND: At M phase, cyclin B1 is phosphorylated in the cytoplasmic retention sequence (CRS), which is required for nuclear export. During interphase, cyclin B1 shuttles between the nucleus and the cytoplasm because constitutive nuclear import is counteracted by rapid nuclear export. In M phase, cyclin B moves rapidly into the nucleus coincident with its phosphorylation, an overall movement that might be caused simply by a decrease in its nuclear export. However, the questions of whether CRS phosphorylation is required for cyclin B1 translocation in mitosis and whether a reduction in nuclear export is sufficient to explain its rapid relocalisation have not been addressed. RESULTS: We have used two forms of green fluorescent protein to analyse simultaneously the translocation of wild-type cyclin B1 and a phosphorylation mutant of cyclin B1 in mitosis, and correlated this with an in vitro nuclear import assay. We show that cyclin B1 rapidly translocates into the nucleus approximately 10 minutes before breakdown of the nuclear envelope, and that this movement requires the CRS phosphorylation sites. A cyclin B1 mutant that cannot be phosphorylated enters the nucleus after the wild-type protein. Phosphorylation of the CRS creates a nuclear import signal that enhances cyclin B1 import in vitro and in vivo, in a manner distinct from the previously described import of cyclin B1 mediated by importin beta. CONCLUSIONS: We show that phosphorylation of human cyclin B1 is required for its rapid translocation to the nucleus towards the end of prophase. Phosphorylation enhances cyclin B1 nuclear import by creating a nuclear import signal. The phosphorylation of the CRS is therefore a critical step in the control of mitosis.  相似文献   

3.
Entry into mitosis is regulated by the Cdc2 kinase complexed to B-type cyclins. We and others recently reported that cyclin B1/Cdc2 complexes, which appear to be constitutively cytoplasmic during interphase, actually shuttle continually into and out of the nucleus, with the rate of nuclear export exceeding the import rate (). At the time of entry into mitosis, the import rate is increased, whereas the export rate is decreased, leading to rapid nuclear accumulation of Cdc2/cyclin B1. Although it has recently been reported that phosphorylation of 4 serines within cyclin B1 promotes the rapid nuclear translocation of Cdc2/cyclin B1 at G(2)/M, the role that individual phosphorylation sites play in this process has not been examined (, ). We report here that phosphorylation of a single serine residue (Ser(113) of Xenopus cyclin B1) abrogates nuclear export of cyclin B1. This serine lies directly within the cyclin B1 nuclear export sequence and, when phosphorylated, prevents binding of the nuclear export factor, CRM1. In contrast, analysis of phosphorylation site mutants suggests that coordinate phosphorylation of all 4 serines (94, 96, 101, and 113) is required for the accelerated nuclear import of cyclin B1/Cdc2 characteristic of G(2)/M. Additionally, binding of cyclin B1 to importin-beta, the factor known to be responsible for the slow interphase nuclear entry of cyclin B1, appears to be unaffected by the phosphorylation state of cyclin B. These data suggest that a distinct import factor must be recruited to enhance nuclear entry of Cdc2/cyclin B1 at the G(2)/M transition.  相似文献   

4.
Ran GTPase activates several target molecules to induce microtubule formation around the chromosomes and centrosomes. In fission yeast, in which the nuclear envelope does not break down during mitosis, Ran targets the centrosomal transforming acidic coiled‐coil (TACC) protein Alp7 for spindle formation. Alp7 accumulates in the nucleus only during mitosis, although its underlying mechanism remains elusive. Here, we investigate the behaviour of Alp7 and its binding partner, Alp14/TOG, throughout the cell cycle. Interestingly, Alp7 enters the nucleus during interphase but is subsequently exported to the cytoplasm by the Exportin‐dependent nuclear export machinery. The continuous nuclear export of Alp7 during interphase is essential for maintaining the array‐like cytoplasmic microtubule structure. The mitosis‐specific nuclear accumulation of Alp7 seems to be under the control of cyclin‐dependent kinase (CDK). These results indicate that the spatiotemporal regulation of microtubule formation is established by the Alp7/TACC–Alp14/TOG complex through the coordinated interplay of Ran and CDK.  相似文献   

5.
Synchronous mitosis is common in multinucleated cells. We analyzed a unique asynchronous nuclear division cycle in a multinucleated filamentous fungus, Ashbya gossypii. Nuclear pedigree analysis and observation of GFP-labeled spindle pole bodies demonstrated that neighboring nuclei in A. gossypii cells are in different cell cycle stages despite close physical proximity. Neighboring nuclei did not differ significantly in their patterns of cyclin protein localization such that both G1 and mitotic cyclins were present regardless of cell cycle stage, suggesting that the complete destruction of cyclins is not occurring in this system. Indeed, the expression of mitotic cyclin lacking NH(2)-terminal destruction box sequences did not block cell cycle progression. Cells lacking AgSic1p, a predicted cyclin-dependent kinase (CDK) inhibitor, however, showed aberrant multipolar spindles and fragmented nuclei that are indicative of flawed mitoses. We hypothesize that the continuous cytoplasm in these cells promoted the evolution of a nuclear division cycle in which CDK inhibitors primarily control CDK activity rather than oscillating mitotic cyclin proteins.  相似文献   

6.
Cyclin B is a regulatory subunit of CDK1 within MPF complex. Degradation of cyclin B via ubiquitin-proteasome pathway seemed to be absolutely required for the M-phase exit. However, inhibition of the proteasome proteolytic activity upon the exit from the meiotic metaphase II-arrest in Xenopus cell-free extract revealed that the proteasome-dependent dissociation of cyclin B from CDK1 is sufficient to inactivate MPF without cyclin B degradation. In this study we analyse whether the same mechanism operates during the exit from mitotic M-phase. We show in Xenopus cell-free extract undergoing the first or the second embryonic mitosis that CDK1 oscillations are not affected by proteasome inhibition with MG132 or ALLN despite effective inhibition of cyclins B degradation. The majority of cyclins B1 and B2 surviving CDK1 inactivation is CDK-free and cyclin B2 becomes resistant to phosphatase ? dephosphorylation. The pool of cyclins B remaining after CDK1 inactivation in the presence of MG132 is mitotically inert, while exogenous or newly synthesised cyclin B activates CDK1. This suggests that cyclins B remain sequestered within the proteasome upon MPF inactivation in the presence of MG132. Comparison of the dynamics of the decline of total and CDK-bound pools of cyclins B1, B2 and B4 upon mitotic exit in absence of protein synthesis reveals that CDK-bound cyclins B diminish clearly faster. Our results thus show that cyclin B dissociation from CDK1 precedes cyclins B degradation upon CDK1 inactivation in mitotic embryo extracts and that proteasome proteolytic activity is dispensable for both activation and inactivation of CDK1 in such extracts.  相似文献   

7.
Active cyclin B1-Cdk1 first appears on centrosomes in prophase   总被引:1,自引:0,他引:1  
Cyclin B1-Cdk1 is the key initiator of mitosis, but when and where activation occurs has not been precisely determined in mammalian cells. Activation may occur in the nucleus or cytoplasm, as just before nuclear envelope breakdown, Polo-like kinase1 (Plk1) is proposed to phosphorylate cyclin B1 in its nuclear export sequence (NES), to trigger rapid nuclear import. We raised phospho-specific antibodies against cyclin B1 that primarily recognise the active form of the complex. We show that cyclin B1 is initially phosphorylated on centrosomes in prophase and that Plk1 phosphorylates cyclin B1, but not in the NES. Furthermore, phosphorylation by Plk1 does not cause cyclin B1 to move into the nucleus. We conclude that cyclin B1-Cdk1 is first activated in the cytoplasm and that centrosomes may function as sites of integration for the proteins that trigger mitosis.  相似文献   

8.
The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.  相似文献   

9.
M-phase-promoting factor (MPF), a complex of cdc2 and a B-type cyclin, is a key regulator of the G2/M cell cycle transition. Cyclin B1 accumulates in the cytoplasm through S and G2 phases and translocates to the nucleus during prophase. We show here that cytoplasmic localization of cyclin B1 during interphase is directed by its nuclear export signal (NES)-dependent transport mechanism. Treatment of HeLa cells with leptomycin B (LMB), a specific inhibitor of the NES-dependent transport, resulted in nuclear accumulation of cyclin B1 in G2 phase. Disruption of an NES which has been identified in cyclin B1 here abolished the nuclear export of this protein, and consequently the NES-disrupted cyclin B1 when expressed in cells accumulated in the nucleus. Moreover, we show that expression of the NES-disrupted cyclin B1 or LMB treatment of the cells is able to override the DNA damage-induced G2 checkpoint when combined with caffeine treatment. These results suggest a role of nuclear exclusion of cyclin B1 in the DNA damage-induced G2 checkpoint.  相似文献   

10.
The cell cycle of most organisms is highlighted by characteristic changes in the appearance and activity of the nucleus. Structural changes in the nucleus are particularly evident when a cell begins to divide. At this time, the nuclear envelope is disassembled, the chromatin condenses into metaphase chromosomes, and the chromosomes associate with a newly formed spindle. Upon completion of cell division the nuclear envelope reassembles around the chromosomes as they form telophase nuclei, and subsequently interphase nuclei, in the daughter cells. The cytoplasmic control of nuclear behavior has been the theme of Yoshio Masui's research for much of his career. His pioneering demonstration that the cytoplasm of maturing amphibian oocytes causes the resumption of the meiotic cell cycle when it is injected into an immature oocyte provided unequivocal evidence that a cytoplasmic factor could initiate the transition from interphase to metaphase (M-phase) in intact cells. As described in several reviews in this and the previous issue of Biology of the Cell (see Beckhelling and Ford; Duesbery and Vande Woude; Maller), Masui initially called this activity maturation promoting factor (MPF), but when it was realized that it was a ubiquitous regulator of both mitotic and meiotic cell cycles, MPF came to stand for M-phase promoting factor. Biochemical evidence indicates that MPF activity is composed of a mitotic B-type cyclins and cyclin-dependent kinase 1. The increase in the protein kinase activity of cdk1 initiates the changes in the nucleus associated with oocyte maturation and with the entry into mitosis. This article will attempt to provide a brief summary of the responses of the nucleus to the activation of MPF. In addition, the effect of MPF inactivation on nuclear envelope assembly at the end of mitosis will be discussed. This article is written as a tribute to Yoshio Masui on his retirement from the University of Toronto, and as an expression of gratitude for his guidance while I was a student in his laboratory. I have felt very privileged to have known him as a mentor and a friend.  相似文献   

11.
Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.  相似文献   

12.
We have studied the effect of maturation-promoting factor (MPF) on embryonic nuclei during the early cleavage stage of Xenopus laevis development. When protein synthesis is inhibited by cycloheximide during this stage, the embryonic cell cycle arrests in an artificially produced G2 phase-like state, after completion of one additional round of DNA synthesis. Approximately 100 nuclei can be arrested in a common cytoplasm if cytokinesis is first inhibited by cytochalasin B. Within 5 min after injection of MPF into such embryos, the nuclear envelope surrounding each nucleus disperses, as determined histologically or by immunofluorescent staining of the nuclear lamina with antilamin antiserum. The breakdown of the nuclear envelope occurs at levels of MPF comparable to or slightly lower than those required for oocyte maturation. Amplification of MPF activity, however, does not occur in the arrested egg as it does in the oocyte. These results suggest that MPF can act to advance interphase nuclei into the first events of mitosis and show that the nuclear lamina responds rapidly to MPF.  相似文献   

13.
In the clam, Spisula, two previously described proteins known as cyclin A and B display the unusual property of selective proteolytic degradation at the end of each mitosis. We show here that clam oocytes and embryos contain a cdc2 protein kinase. This protein kinase is a component of the M phase promoting factor (MPF) in frog eggs and the M phase-specific histone H1 kinase in starfish. Clam cdc2 is found in association with both cyclin A and B, probably not as a trimolecular association, but as separate cdc2/cyclin A and cdc2/cyclin B complexes. Clam cdc2 and the associated cyclins bind to p13suc1-Sepharose. The p13-bound complex, and also anti-cyclin A or B immunoprecipitates, each display cell cycle-dependent histone H1 kinase activity. We suggest that in addition to the cdc2 protein kinase, the cyclins are further components of the M phase promoting factor and that cyclin proteolysis provides the mechanism of MPF inactivation and thus exit from mitosis.  相似文献   

14.
The generation of calcium oscillations at fertilisation and during mitosis appears to be controlled by the cell cycle machinery. For example, the calcium oscillations in oocytes and embryos occur during metaphase and terminate upon entry into interphase. Here we report the manipulation of sperm-triggered calcium oscillations by cyclin-dependent kinase (CDK) activity, the major component of maturation/M phase promoting factor (MPF). To control the CDK activity we microinjected mRNAs encoding full-length GFP-tagged cyclin B1 or a truncated and therefore stabilised form of cyclin B1 ((delta)90) into unfertilised oocytes. In the presence of full-length cyclin B1, the calcium oscillations terminate when cyclin B1 levels fall along with the concomitant fall in the associated CDK activity. In addition, when the CDK activity is elevated indefinitely with (delta)90 cyclin B1, the calcium oscillations also continue indefinitely. Finally, in oocytes that contain low mitogen-activated protein (MAP) kinase activity and elevated CDK activity, the sperm-triggered calcium oscillations are again prolonged. We conclude that the CDK activity of the ascidian oocyte can be regarded as a positive regulator of sperm-triggered calcium oscillations, a finding that may apply to other oocytes that display sperm-triggered calcium oscillations at fertilisation. Furthermore, these findings may have a bearing upon the mitotic calcium signals of early embryos.  相似文献   

15.
Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.  相似文献   

16.
Cyclins form complexes with cyclin-dependent kinases. By controlling activity of the enzymes, cyclins regulate progression through the cell cycle. A- and B-type cyclins were discovered due to their distinct appearance in S and G(2) phases and their rapid proteolytic destruction during mitosis. Transition from G(2) to mitosis is basically controlled by B-type cyclins. In mammals, two cyclin B proteins are well characterized, cyclin B1 and cyclin B2. Recently, a human cyclin B3 gene was described. In contrast to the expression pattern of other B-type cyclins, we find cyclin B3 mRNA expressed not only in S and G(2)/M cells but also in G(0) and G(1). Human cyclin B3 is expressed in different variants. We show that one isoform remains in the cytoplasm, whereas the other variant is translocated to the nucleus. Transport to the nucleus is dependent on three autonomous nonclassical nuclear localization signals that where previously not implicated in nuclear translocation. It had been shown that cyclin B3 coimmunoprecipitates with cdk2; but this complex does not exhibit any kinase activity. Furthermore, a degradation-resistant version of cyclin B3 can arrest cells in G(1) and G(2). Taken together with the finding that cyclin B3 mRNA is not only expressed in G(2)/M but is also detected in significant amounts in resting cells and in G(1) cells. This may suggest a dominant-negative function of human cyclin B3 in competition with activating cyclins in G(0) and the G(1) phase of the cell cycle.  相似文献   

17.
Cyclin-dependent kinase 1 (CDK1) is the enzymatic subunit of M-phase Promoting Factor (MPF). It is positively regulated by phosphorylation on Thr-161 and association with a cyclin B molecule. The role of Thr-161 dephosphorylation upon MPF inactivation remains unclear; nevertheless, degradation of cyclin B is thought to be a direct cause of MPF inactivation. However, MPF inactivation actually precedes cyclin B degradation in Xenopus cell-free extracts. Here we study in details the temporal relationship between histone H1 kinase (reflecting MPF activity) inactivation, Thr-161 dephosphorylation, CDK1-cyclin B2 dissociation and cyclin B2 proteolysis in such extracts. We show an asynchrony between inactivation of histone H1 kinase and degradation of cyclin B2. CDK1 dephosphorylation on Thr 161 is an even later event than cyclin B2 degradation, reinforcing the hypothesis that cyclin B dissociation from CDK1 is the key event inactivating MPF. Cyclins synthesized along with MPF inactivation could deliver shortly living active MPF molecules, potentially increasing the asynchrony between histone H1 kinase inactivation and cyclin B2 degradation. We confirm this by showing that in the absence of protein synthesis, such a tendency is lower, but nevertheless, still detectable. Finally, to characterise better CDK1/cyclin B dissociation, we show that CDK1 begins to dissociate from cyclin B2 before the very beginning of cyclin B2 degradation and that the diminution in CDK1-associated cyclin B2 is faster than the decline of its total pool. Thus, neither cyclin B2 degradation nor Thr-161 dephosphorylation participates directly in CDK1 inactivation as measured by histone H1 kinase decline upon the exit from mitotic M-phase in Xenopus embryo extract.  相似文献   

18.
Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence–containing protein, binding to the α adaptor subunit of the importin-α/β heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-β that is distinct from that used to bind importin-α.  相似文献   

19.
The key regulator of G(2)-M transition of the cell cycle is M-phase promoting factor (MPF), a complex composed of cdc2 and a B-type cyclin. Cyclin B1 nuclear localization involves phosphorylation within a region called the cytoplasmic retention signal, which also contains a nuclear export signal. The mechanism of MPF nuclear localization remains unclear since it contains no functional nuclear localization signal (NLS). We exploited the yeast two-hybrid screen to find protein(s) potentially mediating localization of cyclin B1 and identified a novel interaction between cyclin B1 and cyclin F. We found that cdc2, cyclin B1 and cyclin F form a complex that exhibits histone H1 kinase activity. Cyclin B1 and cyclin F also colocalize through immunofluorescence studies. Additionally, deletion analysis revealed that each putative NLS of cyclin F is functional. Taken together, the data suggest that the NLS regions of cyclin F regulate cyclin B1 localization to the nucleus. The interaction between cyclin B1 and cyclin F represents the first example of direct cyclin-cyclin binding, and elucidates a novel mechanism that regulates MPF localization and function.  相似文献   

20.
The first embryonic M-phase is special, being the time when paternal and maternal chromosomes mix together for the first time. Reports from a variety of species suggest that the regulation of first M-phase has many particularities; however, no systematic comparative study of the biochemical aspects of first and the following M-phases has been previously undertaken. Here, we ask whether the regulation of the first embryonic M-phase is modified, using Xenopus cell-free extracts. We developed new types of extract specific for the first and the second M-phase obtained either from parthenogenetic or from in vitro fertilized embryos. Analyses of these extracts confirmed that the amplitude of histone H1 kinase activity reflecting CDK1/cyclin B (or MPF for M-phase Promoting Factor) activity is higher and persists longer than during the second M-phase, and that levels of cyclins B1 and B2 are correspondingly higher during the first than the second embryonic M-phase. Inhibition of protein synthesis shortly before M-phase entry reduced mitotic histone H1 kinase amplitude, shortened the period of mitotic phosphorylation of chosen marker proteins, and reduced cyclin B1 and B2 levels, suggesting a role of B-type cyclins in regulating the duration of mitotic events. Moreover, addition of exogenous cyclin B to the extract prior the second mitosis brought forward the activation of mitotic histone H1 kinase but prolonged the duration of this activity. We also confirmed that the inhibitory phosphorylation of CDK1 on tyrosine 15 oscillates between the first two embryonic M-phases, but is clearly more pronounced before the first than the second mitosis, while the MAP kinase ERK2 tended to show greater activation during the first embryonic M-phase but with a similar duration of activation. We conclude that discrete differences exist between the first two M-phases in Xenopus embryo and that higher CDK1/cyclin B activity and B-type cyclin levels could account for the different characteristics of these M-phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号