首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glycine betaine strongly stimulated the growth rate of five strains of Erwinia chrysanthemi when grown in a synthetic medium at 0·986, 0·983 and 0·980 a w (NaCl) whereas in four strains, little effect was observed compared with the control. Proline, dimethyl glycine, carnitine and pipecolic acid also actedas osmoprotectants. Glutamate and trehalose, commonly accumulated by enteric bacteria in response to osmotic stress, failed to act as osmoprotectants when supplied exogenously. Glycine betaine and pipecolic acid partially overcame the inhibition of pectate lyase release by NaCl in strain ECC. 13C NMR spectroscopy of two osmotically-stressed strains showed that glycine betaine was accumulated intracellularly from synthetic media containing the exogenous osmoprotectant. However, both strains also synthesized and accumulated trehalose in addition to glycine betaine in response to osmotic stress in complex media containing glycine betaine.  相似文献   

2.
Accumulation of compatible solutes is a strategy widely employed by bacteria to achieve cellular protection against high osmolarity. These compounds are also used in some microorganisms as thermostress protectants. We found that Bacillus subtilis uses the compatible solute glycine betaine as an effective cold stress protectant. Glycine betaine strongly stimulated growth at 15°C and permitted cell proliferation at the growth-inhibiting temperature of 13°C. Initial uptake of glycine betaine at 15°C was low but led eventually to the buildup of an intracellular pool whose size was double that found in cells grown at 35°C. Each of the three glycine betaine transporters (OpuA, OpuC, and OpuD) contributed to glycine betaine accumulation in the cold. Protection against cold stress was also accomplished when glycine betaine was synthesized from its precursor choline. Growth of a mutant defective in the osmoadaptive biosynthesis for the compatible solute proline was not impaired at low temperature (15°C). In addition to glycine betaine, the compatible solutes and osmoprotectants l-carnitine, crotonobetaine, butyrobetaine, homobetaine, dimethylsulfonioactetate, and proline betaine all served as cold stress protectants as well and were accumulated via known Opu transport systems. In contrast, the compatible solutes and osmoprotectants choline-O-sulfate, ectoine, proline, and glutamate were not cold protective. Our data highlight an underappreciated facet of the acclimatization of B. subtilis to cold environments and allow a comparison of the characteristics of compatible solutes with respect to their osmotic, heat, and cold stress-protective properties for B. subtilis cells.  相似文献   

3.
Elevated osmolality and pCO(2) have been shown to alter sialylation in a protein-specific manner. In Chinese hamster ovary (CHO)MT2-l-8 cells, tPA sialylation changed only slightly from 40 to 250 mm Hg pCO(2), whereas neural cell adhesion molecule polysialic acid (NCAM PSA) content decreased by up to 70% at 250 mm Hg pCO(2), pH 7.2. NCAM PSA content also decreased with increasing NaCl or NH(4)Cl concentration. This suggests that PSA content is a sensitive indicator of conditions that may alter glycosylation. Amino acids and their derivatives have been used to protect hybridoma and CHO cell growth under hyperosmotic stress. We examined the impact of osmoprotectants on NCAM PSA content in CHO MT2-1-8 cells under hyperosmolality (up to 545 mOsm/kg) and at 195 and 250 mm Hg pCO(2). NCAM PSA content at 545 mOsm/kg was at least two-fold greater in the presence of glycine betaine or L-proline compared to that without osmoprotectant. Surprisingly, in the presence of 20 mM glycine betaine, PSA levels were 50-60% of the control level for osmolalities ranging from 320 to 545 mOsm/kg. Thus, glycine betaine inhibits NCAM polysialylation at osmolalities below 435 mOsm/kg and is beneficial at higher osmolalities. In contrast to glycine betaine, L-proline increased PSA content by 25-120% relative to the unprotected culture at < or =545 mOsm/kg. The decrease in NCAM PSA levels of CHO MT2-1-8 cells cultured at 195 mm Hg pCO(2)-435 mOsm/kg was not mitigated by the presence of 25 mM glycine betaine, glycine, or L-threonine, even though all of these compounds enhanced cell growth. At 250 mm Hg pCO(2), all osmoprotectants tested (20 mM L-threonine, L-proline, glycine, or glycine betaine) increased NCAM polysialylation, with 20 mM glycine betaine restoring NCAM PSA to near control levels. Thus, osmoprotectants may (partially) offset changes in glycosylation, as well as the inhibition of growth, in cells under environmental stress. Supernatant beta-galactosidase levels, which increase upon alkalization of acidic organelles, did not differ significantly under elevated pCO(2) and hyperosmolality from that at control conditions.  相似文献   

4.
Penicillium fellutanum is osmotolerant and xerotolerant when cultured in a low-phosphate medium containing 3 M NaCl. Glycerol and erythritol accumulated in cultures with NaCl concentrations up to 2 M; glycerol was the only detectable polyol in cultures containing 3 M NaCl. In cultures with 3 M NaCl, the intracellular levels of glycine betaine and choline-O-sulfate were 22- and 2.6-fold greater (70 and 46 mM), respectively, than those of cultures without added NaCl. The levels of glycine betaine and glycerol decreased in mycelia transferred from a medium containing 3 M NaCl into a fresh medium without added NaCl. NaCl at 3 M inhibited mycelial mass accumulation; this inhibition was partially corrected by supplementation of cultures with glycine betaine (2 mM) or choline-O-sulfate (10 mM). The presence of exogenous choline chloride (2 mM) in plate cultures protected the cells from stress from 3 M NaCl. The data suggest that glycine betaine and choline-O-sulfate are secondary osmoprotectants which are effective at the point that the cell is incapable of synthesizing more glycerol.  相似文献   

5.
To further study mechanisms of coping with osmotic stress-low water activity, mutants of Staphylococcus aureus with transposon Tn917-lacZ-induced NaCl sensitivity were selected for impaired ability to grow on solid defined medium containing 2 M NaCl. Southern hybridization experiments showed that NaCl-sensitive mutants had a single copy of the transposon inserted into a DNA fragment of the same size in each mutant. These NaCl-sensitive mutants had an extremely long lag phase (60 to 70 h) in defined medium containing 2.5 M NaCl. The osmoprotectants glycine betaine and choline (which is oxidized to glycine betaine) dramatically shortened the lag phase, whereas L-proline and proline betaine, which are effective osmoprotectants for the wild type, were ineffective. Electron microscopic observations of the NaCl-sensitive mutant under NaCl stress conditions revealed large, pseudomulticellular cells similar to those observed previously in the wild type under the same conditions. Glycine betaine, but not L-proline, corrected the morphological abnormalities. Studies of the uptake of L-[14C]proline and [14C]glycine betaine upon osmotic upshock revealed that the mutant was not defective in the uptake of either osmoprotectant. Comparison of pool K+, amino acid, and glycine betaine levels under NaCl stress conditions in the mutant and the wild type revealed no striking differences. Glycine betaine appears to have additional beneficial effects on NaCl-stressed cells beyond those of other osmoprotectants. The NaCl stress protein responses of the wild type and the NaCl-sensitive mutant were characterized and compared by labeling with L-[35 S]methionine and two-dimensional gel electrophoresis. The synthesis of 10 proteins increased in the wild type in response to NaCl stress, whereas the synthesis of these 10 proteins plus 2 others increased in response to NaCl stress in the NaCl-sensitive mutant. Five proteins, three of which were NaCl stress proteins, were produced in elevated amounts in the NaCl-sensitive mutant under unstressed conditions compared to the wild type. The presence of glycine betaine during NaCl stress decreased the production of three NaCl stress proteins in the mutant versus one in the wild type.  相似文献   

6.
In the coryneform Brevibacterium linens, ectoine constitutes the major intracellular solute accumulated under elevated medium osmolarity. Here we report that exogenously supplied proline, choline, glycine betaine, and even ectoine, protected bacterial cells against deleterious effects of a hyperosmotic constraint (i.e. 1.5 M NaCl). In all cases, a significant improvement of growth was observed; in parallel, intracellular osmolyte pools composed mainly of glutamate and ectoine substantially increased, either with added glycine betaine (under limiting supply) or with proline. However, these two osmoprotectants behaved differently: glycine betaine acted as a genuine osmoprotectant, whereas proline was accumulated only transiently and participated actively in the biosynthesis of glutamate, ectoine, and trehalose. The strategy developed by B. linens cells allows the proposal of a novel role for proline in the osmoprotection process through its conversion to the apparently preferred endogenous osmolyte ectoine.  相似文献   

7.
Natural-abundance (13)C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na(+) content and confer a much higher salt tolerance to T. halophila.  相似文献   

8.
9.
The effects of osmoprotectants (such as glycine betaine and proline) and particulate materials on the fermentation of very high concentrations of glucose by the brewing strain Saccharomyces cerevisiae (uvarum) NCYC 1324 were studied. The yeast growing at 20 degrees C consumed only 15 g of the sugar per 100 ml from a minimal medium which initially contained 35% (wt/vol) glucose. Supplementing the medium with a mixture of glycine betaine, glycine, and proline increased the amount of sugar fermented to 30.5 g/100 ml. With such supplementation, the viability of the yeast cells was maintained above 80% throughout the fermentation, while it dropped to less than 12% in the unsupplemented controls. Among single additives, glycine was more effective than proline or glycine betaine. On incubating the cultures for 10 days, the viability decreased to only 55% with glycine, while it dropped to 36 and 27%, respectively, with glycine betaine and proline. It is suggested that glycine and proline, known to be poor nitrogen sources for growth, may serve directly or indirectly as osmoprotectants. Nutrients such as tryptone, yeast extract, and a mixture of purine and pyrimidine bases increased the sugar uptake and ethanol production but did not allow the population to maintain the high level of cell viability. While only 43% of the sugar was fermented in unsupplemented medium, the presence of particulate materials such as wheat bran, wheat mash insolubles, alumina, and soy flour increased sugar utilization to 68, 75, 81, and 82%, respectively.  相似文献   

10.
Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila.  相似文献   

11.
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.  相似文献   

12.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 μM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 μM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

13.
M Farwick  R M Siewe    R Krmer 《Journal of bacteriology》1995,177(16):4690-4695
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.  相似文献   

14.
Metabolic engineering for betaine accumulation in microbes and plants   总被引:1,自引:0,他引:1  
Plants accumulate a variety of osmoprotectants that improve their ability to combat abiotic stresses. Among them, betaine appears to play an important role in conferring resistance to stresses. Betaine is synthesized via either choline oxidation or glycine methylation. An increased betaine level in transgenic plants is one of the potential strategies to generate stress-tolerant crop plants. Here, we showed that an exogenous supply of serine or glycine to a halotolerant cyanobacterium Aphanothece halophytica, which synthesizes betaine from glycine by a three-step methylation, elevated intracellular accumulation of betaine under salt stress. The gene encoding 3-phosphoglycerate dehydrogenase (PGDH), which catalyzes the first step of the phosphorylated pathway of serine biosynthesis, was isolated from A. halophytica. Expression of the Aphanothece PGDH gene in Escherichia coli caused an increase in levels of betaine as well as glycine and serine. Expression of the Aphanothece PGDH gene in Arabidopsis plants, in which the betaine synthetic pathway was introduced via glycine methylation, further increased betaine levels and improved the stress tolerance. These results demonstrate that PGDH enhances the levels of betaine by providing the precursor serine for both choline oxidation and glycine methylation pathways.  相似文献   

15.
Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K+ glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm.  相似文献   

16.
S Cayley  B A Lewis    M T Record  Jr 《Journal of bacteriology》1992,174(5):1586-1595
The amounts of cytoplasmic water and of all osmotically significant cytoplasmic solutes were determined for Escherichia coli K-12 grown in 3-(N-morpholino)propane sulfonate (MOPS)-buffered glucose-minimal medium containing 0.5 M NaCl in the presence and absence of the osmoprotectants betaine and proline. The goal of this work is to correlate the effects of osmoprotectants on the composition of the cytoplasm with their ability to increase the growth rate of osmotically stressed cells. At a concentration of 1 mM in the growth medium, betaine increases the growth rate more than does proline; choline, which is converted to betaine by E. coli, appears to have an intermediate effect on growth rate. The accumulation of either betaine or proline reduces the cytoplasmic amounts of K+, glutamate, trehalose, and MOPS (the major cytoplasmic osmolytes accumulated in the absence of osmoprotectants), so that at this external osmolarity the total amount of cytoplasmic solutes is essentially the same in the presence or absence of either osmoprotectant. More betaine than proline is accumulated, so the extent of replacement of cytoplasmic solutes is greater for betaine than for proline. Accumulation of these osmoprotectants is accompanied by a large (20 to 50%) increase in the volume of cytoplasmic water per unit of cell dry weight (Vcyto). This effect, which appears to result from an increase in the volume of free water, Vf (as opposed to water of hydration, or bound water), is greater for betaine than for proline. Taken together, these results indicate that the molar effects of betaine and proline on water activity and on the osmotic pressure of the cytoplasm must be significantly larger than those of the solutes they replace. Cayley et al. (S. Cayley, B. A. Lewis, H. J. Guttman, and M. T. Record, Jr., J. Mol. Biol. 222:281-300, 1991) observed that, in cells grown in the absence of osmoprotectants, both growth rate and Vcyto decreased, whereas the amount of cytoplasmic K+ (nK+) increased, with increasing external osmolarity. We predicted that the observed changes in nK+ and Vcyto would have large and approximately compensating effects on key protein-nucleic acid interactions of gene expression, and we proposed that Vf was the fundamental determinant of growth rate in osmotically stressed cells. The properties of cells cultured in the presence of betaine and proline appear completely consistent with our previous work and proposals. Accumulation of betaine and, to a lesser extent, proline shifts the set of linked physiological parameters (nK+, Vcyto, growth rate) to those characteristic of growth at lower osmolarity in the absence of osmoprotectants. Models for the thermodynamic basis and physiological consequences of the effect of osmoprotectants on Vcyto and Vf are discussed.  相似文献   

17.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

18.
Osmoregulation was examined in members of the Enterobacteriaceae. Exogenous glycine betaine at a concentration as low as 1 mM was found to stimulate the growth rate of Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae in media of inhibitory osmotic strength. The stimulation was shown to be independent of any specific solutes, electrolytes, or nonelectrolytes. Therefore, the stimulatory effect of glycine betaine was a consequence of high osmotic potential. This effect was found to be far greater than the proline effect previously observed in S. typhimurium. Whereas nitrogen fixation by K. pneumoniae is completely inhibited under conditions of osmotic stress, nitrogenase activity could be partially restored by the addition of exogenous glycine betaine to the culture medium. Furthermore, glycine betaine in combination with proline, especially proline produced internally at a high level because of regulatory mutations affecting proline biosynthesis, strongly stimulated nitrogen fixation activity during osmotic stress. Glycine betaine was accumulated by the cells, and the amount taken up was correlated with the osmolarity of the medium. These findings are discussed in relation to the possible mechanisms by which glycine betaine might cause enhanced osmotolerance.  相似文献   

19.
Osmoregulation was examined in members of the Enterobacteriaceae. Exogenous glycine betaine at a concentration as low as 1 mM was found to stimulate the growth rate of Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae in media of inhibitory osmotic strength. The stimulation was shown to be independent of any specific solutes, electrolytes, or nonelectrolytes. Therefore, the stimulatory effect of glycine betaine was a consequence of high osmotic potential. This effect was found to be far greater than the proline effect previously observed in S. typhimurium. Whereas nitrogen fixation by K. pneumoniae is completely inhibited under conditions of osmotic stress, nitrogenase activity could be partially restored by the addition of exogenous glycine betaine to the culture medium. Furthermore, glycine betaine in combination with proline, especially proline produced internally at a high level because of regulatory mutations affecting proline biosynthesis, strongly stimulated nitrogen fixation activity during osmotic stress. Glycine betaine was accumulated by the cells, and the amount taken up was correlated with the osmolarity of the medium. These findings are discussed in relation to the possible mechanisms by which glycine betaine might cause enhanced osmotolerance.  相似文献   

20.
Yersinia enterocolitica is a gram-negative, food-borne pathogen that can grow in 5% NaCl and at refrigerator temperatures. In this report, the compatible solutes (osmolytes) which accumulate intracellularly and confer the observed osmotic tolerance to this pathogen were identified. In minimal medium, glutamate was the only detectable osmolyte that accumulated in osmotically stressed cells. However, when the growth medium was supplemented with glycine betaine, dimethylglycine, or carnitine, the respective osmolyte accumulated intracellularly to high levels and the growth rates of the osmotically stressed cultures improved from 2.4- to 3.5-fold. Chill stress also stimulated the intracellular accumulation of glycine betaine, but the growth rate was only slightly improved by this osmolyte. Both osmotic upshock and temperature downshock stimulated the rate of uptake of [(sup14)C]glycine betaine by more than 30-fold, consistent with other data indicating that the osmolytes are accumulated from the growth medium via transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号