首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 913 毫秒
1.
A meta-analysis of the microbial diversity observed in anaerobic digesters   总被引:2,自引:0,他引:2  
In this study, the collective microbial diversity in anaerobic digesters was examined using a meta-analysis approach. All 16S rRNA gene sequences recovered from anaerobic digesters available in public databases were retrieved and subjected to phylogenetic and statistical analyses. As of May 2010, 16,519 bacterial and 2869 archaeal sequences were found in GenBank. The bacterial sequences were assigned to 5926 operational taxonomic units (OTUs, based on ?97% sequence identity) representing 28 known bacterial phyla, with Proteobacteria (1590 OTUs), Firmicutes (1352 OTUs), Bacteroidetes (705 OTUs), and Chloroflexi (693 OTUs) being predominant. Archaeal sequences were assigned to 296 OTUs, primarily Methanosaeta and the uncharacterized WSA2 group. Nearly 60% of all sequences could not be classified to any established genus. Rarefaction analysis indicates that approximately 60% of bacterial and 90% of archaeal diversity in anaerobic digesters has been sampled. This analysis of the global bacterial and archaeal diversity in AD systems can guide future studies to further examine the microbial diversity involved in AD and development of comprehensive analytical tools.  相似文献   

2.
Mining negatively affects the environment by producing large quantities of metallic tailings, such as those contaminated with arsenic, with harmful consequences for human and aquatic life. A culture-independent molecular analysis was performed to assess the prokaryotic diversity and community structural changes of the tropical historically metal-contaminated Mina stream (MS) and the relatively pristine Mutuca stream (MTS) sediments. A total of 234 bacterial operational taxonomic units (OTUs) were affiliated with 14 (MS) and 17 (MTS) phyla and 53 OTUs were associated with two archaeal phyla. Although the bacterial community compositions of these sediments were markedly distinct, no significant difference in the diversity indices between the bacterial communities was observed. Additionally, the rarefaction and diversity indices indicated a higher bacterial diversity than archaeal diversity. Most of the OTUs were affiliated with the Proteobacteria and Bacteroidetes phyla. Alphaproteobacteria, Gemmatimonadetes and Actinobacteria were only found in the MS clone library. Crenarchaeal 16S rDNA sequences constituted 75 % of the MS archaeal clones, whereas Euryarchaeota were dominant in the MTS clones. Despite the markedly different characteristics of these streams, their bacterial communities harbor high diversity, suggesting that historically mining-impacted sediments promote diversity. The findings also provide basis for further investigation of members of Alphaproteobacteria as potential biological indicators of arsenic-rich sediments.  相似文献   

3.
Biological hydrogen production through the anaerobic digestion is an environmental friendly alternative for satisfying future hydrogen demands. Microorganisms residing into waste water treatment plants are far from being exhaustively characterized and surveys on hydrogen production through FeFe-hydrogenase in such ecosystems are scarce. This study combined the analysis of 16S rRNA and [FeFe]-hydrogenase (hydA) genes with statistical tools to estimate richness and diversity of the microbial community of a domestic sewage treatment plant at the phylogenetic and functional levels. Archaeal groups were represented by 69 % of sequences assigned to Methanosarcinales and the remaining belonged to Methanomicrobiales. Within the bacterial library, 136 operational taxonomic units (OTUs) were distributed into 9 phyla, being 86 OTUs related to uncultivated bacteria. From these, 25 OTUs represented potential novel taxa within Synergistetes. Proteobacteria was the most predominant (36 % of the OTUs) and diversified phylogenetic group in the bacterial library, most of them assigned to the class Betaproteobacteria. Twenty-two putative hydA sequences were recovered into four distinct clusters and most of them were more closely related to each other than with sequences retrieved from databases, indicating they are hitherto undetected [Fe–Fe]-hydrogenase gene sequences. The richness estimates revealed that the number of sampled sequences was enough for full coverage of the archaeal diversity but not sufficient to cover both bacterial and hydA gene diversities. The results confirmed a great richness and diversity of bacterial and hydA sequences retrieved from the sewage sludge sample, suggesting such environment as a potential reservoir of new hydrogenase genes for biotechnological exploration.  相似文献   

4.
Performance of biological wastewater treatment systems may be related to the composition and activity of microbial populations they contain. However, little information is known regarding microbial community inhabiting these ecosystems. The purpose of this study was to investigate archaeal and bacterial diversity, using cultivation-independent molecular techniques, in a constructed wetland receiving domestic wastewater. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by PCR using primers specific for archaeal and bacterial domains. A high microbial diversity was detected. The Proteobacteria phylum is the most abundant and diversified phylogenetic group representing 31.3 % of the OTUs, followed by the Bacteroidetes (14.8 %), Planctomycetales (13.8 %), Actinobacteria (12 %), and Chloroflexi (8.2 %). Sequences affiliated with minor phylogenetic divisions such as the TM7, Nitrospira, OP10, and BRC1 are represented by <6 % of total OTUs. The Archaea domain was represented by the Thaumarchaeota phylum dominated by the Candidatus Nitrososphaera genus.  相似文献   

5.
The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m3 digester produced biogas with 57 % methane, and chemical oxygen demand removal of 54 %. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93 % of the clones and 76 % of the pyrotags. Of the Firmicutes, class Clostridia (52 % pyrotags) was most abundant followed by class Bacilli (13 % pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97 % minimum similarity level. Fifteen OTUs were dominant (≥2 % abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (<0.5 % abundance), 75 % were Firmicutes. The dominant methanogen was Methanothermobacter which has hydrogenotrophic metabolism, and accounted for >99 % of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.  相似文献   

6.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

7.
Bacterial and archaeal diversity in surface soils of three coal-fire vents was investigated by T-RFLP analysis and clone libraries of 16S rRNA genes. Soil analysis showed that underground coal fires significantly influenced soil pH, moisture and NO3 ? content but had little effect on other elements, organic matter and available nutrients. Hierarchical cluster analysis showed that bacterial community patterns in the soils were very similar, but abundance varied with geographic distance. A clone library from one soil showed that the bacterial community was mainly composed of Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Actinobacteria, and unidentified groups. Of these, Firmicutes was the most abundant, accounting for 71.4 % of the clones, and was mainly represented by the genera Bacillus and Paenibacillus. Archaeal phylotypes were closely related to uncultivated species of the phyla Crenarchaeota (97.9 % of clones) and Thaumarchaeota (2.1 %). About 28 % of archaeal phylotypes were associated with ammonia oxidization, especially phylotypes that were highly related to a novel, ammonia-oxidizing isolate from the phylum Thaumarchaeota. These results suggested that microbial communities in the soils were diverse and might contain a large number of novel cultivable species with the potential to assimilate materials by heterotrophic metabolism at high temperature.  相似文献   

8.
Status of the phylogenetic diversity census of ruminal microbiomes   总被引:4,自引:0,他引:4  
In this study, the collective microbial diversity in the rumen was examined by performing a meta-analysis of all the curated 16S rRNA gene (rrn) sequences deposited in the RDP database. As of November 2010, 13,478 bacterial and 3516 archaeal rrn sequences were found. The bacterial sequences were assigned to 5271 operation taxonomic units (OTUs) at species level (0.03 phylogenetic distance) representing 19 existing phyla, of which the Firmicutes (2958 OTUs), Bacteroidetes (1610 OTUs) and Proteobacteria (226 OTUs) were the most predominant. These bacterial sequences were grouped into more than 3500 OTUs at genus level (0.05 distance), but only 180 existing genera were represented. Nearly all the archaeal sequences were assigned to 943 species-level OTUs in phylum Euryarchaeota. Although clustered into 670 genus-level OTUs, only 12 existing archaeal genera were represented. Based on rarefaction analysis, the current percent coverage at species level reached 71% for bacteria and 65% for archaea. At least 78,218 bacterial and 24,480 archaeal sequences would be needed to reach 99.9% coverage. The results of this study may serve as a framework to assess the significance of individual populations to rumen functions and to guide future studies to identify the alpha and global diversity of ruminal microbiomes.  相似文献   

9.
Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70 % of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.  相似文献   

10.
The Sanjiang Plain is the largest freshwater wetlands in Northeast China. In order to feed the growing population, about 84 % of the wetlands in this area have been converted to farmland, especially to paddy fields, since the 1950s. However, little is known about the influence of this conversion on soil microbial community composition. In this study, soil samples were collected from two natural wetlands dominated by plant species Carex lasiocarpa and Deyeuxia angustifolia and from a neighboring paddy field that was changed from wetland more than 10 years ago. The composition and diversity of bacterial communities in the soils were estimated by clone library analysis of nearly full length of 16S rDNA sequences. The results revealed that bacterial diversity was higher in paddy fields, and that the composition of bacterial communities differed among the three samples; the difference was more notable between the paddy field and two natural wetlands than between two natural wetlands. The distribution of clones into different bacterial phyla differed among soil samples, and the conversion from natural wetlands to paddy field increased the abundance of Proteobacteria and Firmicutes but decreased the abundance of Chloroflexi. About 63 % and 71 % of clones from two natural wetlands and 49 % of clones from the paddy field had <93 % similarity with known bacteria, suggesting that the majority of bacteria in natural wetland soils in the Sanjiang Plain are phylogenetically novel. In general, this study demonstrated that long-term conversion from natural wetlands to paddy field changes soil bacterial communities in the Sanjiang Plain.  相似文献   

11.
While the use of anaerobic digestion to generate methane as a source of bioenergy is increasing worldwide, our knowledge of the microbial communities that perform biomethanation is very limited. Using next-generation sequencing, bacterial population profiles were determined in three full-scale mesophilic anaerobic digesters operated on dairy farms in the state of Vermont (USA). To our knowledge, this is the first report of a metagenomic analysis on the bacterial population of anaerobic digesters using dairy manure as their main substrate. A total of 20,366 non-chimeric sequence reads, covering the V1-V2 hypervariable regions of the bacterial 16S rRNA gene, were assigned to 2,176 operational taxonomic units (OTUs) at a genetic distance cutoff value of 5 %. Based on their limited sequence identity to validly characterized species, the majority of OTUs identified in our study likely represented novel bacterial species. Using a naïve Bayesian classifier, 1,624 anaerobic digester OTUs could be assigned to 16 bacterial phyla, while 552 OTUs could not be classified and may belong to novel bacterial taxonomic groups that have yet to be described. Firmicutes, Bacteroidetes, and Chloroflexi were the most highly represented bacteria overall, with Bacteroidetes and Chloroflexi showing the least and the most variation in abundance between digesters, respectively. All digesters shared 132 OTUs, which as a “core” group represented 65.4 to 70.6 % of sequences in individual digesters. Our results show that bacterial populations from microbial communities of anaerobic manure digesters can display high levels of diversity despite sharing a common core substrate.  相似文献   

12.
The solitary ascidian Styela plicata is an introduced species in harbors of temperate and tropical oceans around the world. The invasive potential of this species has been studied through reproductive biology and population genetics but no study has yet examined the microbial diversity associated with this ascidian and its potential role in host ecology and invasiveness. Here, we used 16S rRNA gene tag pyrosequencing and transmission electron microscopy to characterize the abundance, diversity and host-specificity of bacteria associated with 3 Mediterranean individuals of S. plicata. Microscopy revealed low bacterial abundance in the inner tunic and their absence from gonad tissues, while pyrosequencing revealed a high diversity of S. plicata-associated bacteria (284 OTUs from 16 microbial phyla) in the inner tunic. The core symbiont community was small and consisted of 16 OTUs present in all S. plicata hosts. This core community included a recently described ascidian symbiont (Hasllibacter halocynthiae) and several known sponge and coral symbionts, including a strictly anaerobic Chloroflexi lineage. Most recovered bacterial OTUs (79.6 %) were present in single S. plicata individuals and statistical analyses of genetic diversity and community structure confirmed high variability of bacterial communities among host individuals. These results suggest that diverse and variable bacterial communities inhabit the tunic of S. plicata, including environmental and host-associated bacterial lineages that appear to be re-established each host generation. We hypothesize that bacterial communities in S. plicata are dynamic and have the potential to aid host acclimation to new habitats by establishing relationships with beneficial, locally sourced bacteria.  相似文献   

13.
To characterize the archaeal community composition in soil originating iron-manganese nodules, four types of soils—brown soil, yellow-cinnamon soil, yellow brown soil and red soil—and their associated iron-manganese nodules were collected from Queyu (QY), Zaoyang (ZY), Wuhan (WH) and Guiyang (GY), China, respectively, and subjected to quantitative polymerase chain reaction, cloning and sequencing analyses. The results showed that the archaeal 16S rRNA gene copy numbers in nodules, ranging between 3.59 × 102 and 4.17 × 103 copies g?1 dry nodule, were about 50–1000 times lower than those in their corresponding soils (1.87 × 105 to 1.08 × 106 copies g?1 dry soil), correlating with the low organic matter in the nodules, while archaea accounted for a relatively higher proportion of total prokaryote in nodules than in soils. Community composition analysis suggested that the archaeal diversity in both soils and nodules were much lower than bacterial, but archaeal community structures were similar to each other among the soils and nodules from the same location but varied among four locations, converse to the previous observation that bacterial community shifted markedly between nodules and soils as the result of habitat filtering. The archaeal communities in both soils and nodules were predominated by Thaumarchaeota Group I.1b with the relative abundance ranging between 73.88 and 94.17%, except that Euryarchaeota dominated the archaeal community in one nodule sample (WHn) developed from lake sediment. The finding shed new light on the archaeal diversity and their ecophysiology in different habitats, and further supported the opinion that archaea are more adaptable to stress and unfavorable conditions.  相似文献   

14.
Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the “Franz-Josef-Quelle” in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (α, β, γ, and δ), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (δ-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.  相似文献   

15.
The Gahai Lake wetland natural conservation area in northwestern China includes peatland that has been accumulating over hundreds of years and is seldom disturbed by industry. Bacteria and archaea in peat soil, which is a reservoir for carbon and water, may influence its ecological function. The objective of this study was to obtain a clearer understanding of peat microbial ecology and its relationship to the environmental conditions of this area. Hence, the microbial community of the peatland ecosystem was investigated by sequencing bacterial and archaeal DNA extracted from samples collected at different peat depths. Results showed that in all samples the dominant bacterial phyla were Proteobacteria (relative abundance 0.39 ± 0.12) and Chloroflexi (0.16 ± 0.09), while the dominant archaeal phyla were Miscellaneous Crenarchaeotic Group (MCG) (0.62 ± 0.21) and Euryarchaeota (0.27 ± 0.16). The diversity and microbial community structure at deeper depths (90 and 120 cm below the peat surface) significantly differ from that at shallower depths (10, 30 and 50 cm deep). In contrast to the shallow layers, the deeper layers became more abundant in the bacterial phyla Chloroflexi, Bacteroidetes, Atribacteria, Aminicenantes, Chlorobi, TA06, Caldiserica and Spirochaetae; and in the archaeal phyla MCG and Miscellaneous Euryarchaeotic Group (MEG). This study revealed a significant shift in microbial community in peat between 50 cm and 90 cm deep, as probably influenced by the oxygen supply at different depths. Furthermore, new insights into the microbial taxa were obtained, thus providing a baseline for future studies of this peat ecosystem.  相似文献   

16.
Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.  相似文献   

17.
The goal of the work was to reveal the differences in the structure of microbial communities of Transbaikalia alkaline lakes stemming from the differences in their salinity and hydrochemical parameters. The lakes studied were Verkhnee Beloe (Buryat Republic, Russia), as well as Khilganta, Gorbunka, and Borzinskoe (Transbaikal krai, Russia) with salinity from 12.3 to 430 g/L, which differed in the mineral composition of the sediments and hydrochemical parameters. Lake sediments were found to contain 47 prokaryotic phyla (42 bacterial and 5 archaeal ones). The phyla Proteobacteria, Euryarchaeota, Bacteroides, Chloroflexi, Actinobacteria, and Firmicutes were predominant, comprising over 95% of the classified sequences. Comparative abundance of archaea increased with salinity from below 1% in Lake Verkhnee Beloe to 35% in Lake Borzinskoe. The most numerous bacterial OTUs belonged to gammaproteobacteria of the genus Halomonas (up to 15% of the number of classified sequences). The most numerous archaeal OTUs were identified at the genus level as members of the genera Halorubrum and Halohasta belonging to the family Halorubraceae, which comprises extremely halophilic Euryarchaeota.  相似文献   

18.
云南热带户用沼气池的原核生物群落结构研究   总被引:2,自引:0,他引:2  
【目的】揭示云南热带农村户用沼气池中的原核生物(细菌和古菌)的群落结构特征。【方法】采用16S r RNA基因克隆文库技术对云南(北)热带代表性气候区的户用沼气池中的原核生物(细菌和古菌)多样性进行研究。【结果】得到细菌330条有效序列,划分为108个OTUs,文库覆盖度为81.5%;古菌有效序列185条,划分为17个OTUs,文库覆盖度为97.8%。通过Gen Bank数据库进行相似性比对与系统发育分析,结果表明:大部分细菌为未知细菌(Unclassified bacteria,占24.19%),优势细菌类群归属拟杆菌门(Bacteroidetes,占23.58%)、绿弯菌门(Chloroflexi,占21.46%)、厚壁菌门(Firmicutes,占13.91%)和变形菌门(Proteobacteria,占8.74%);古菌主要的优势类群为乙酸盐营养型的甲烷八叠球菌目(Methanosarcinales)的鬃毛甲烷菌属(Methanosaeta,占76.75%);此外还检测到少量未培养的泉古菌门细菌(Crenarchaeota,占9.19%)。【结论】云南(北)热带代表性气候区的农村户用沼气池中的微生物种类十分丰富,不同微生物种类的丰度存在明显差异,并存在明显优势种群,且细菌比古菌具有更丰富的多样性。  相似文献   

19.
The prokaryotic communities of four salterns (Bingöl, Fadlum, Kemah, and Tuzlagözü) in Turkey were examined and compared using the cultivation and cultivation-independent methods [fluorescence in situ hybridization (FISH) and 454 pyrosequencing]. FISH analysis with universal probes revealed that feeding waters carried 1.6 × 102–1.7 × 103 cells mL?1, while crystallization ponds carried 3.8 × 106–2.0 × 107 cells mL?1 that were mostly haloarchaea, including square cells (except for Kemah). High-throughput 16S rRNA-based gene sequencing showed that the most frequent archaeal OTUs in Bingöl, Fadlum, Tuzlagözü, and Kemah samples were affiliated with Haloquadratum (76.8 %), Haloarcula (27.8 %), Halorubrum (49.6 %), and Halonotius (59.8 %), respectively. Bacteroidetes was the dominant bacterial phylum in Bingöl and Fadlum, representing 71.5 and 79.5 % of the bacterial OTUs (respectively), while the most abundant bacterial phylum found in the Kemah saltern was Proteobacteria (79.6 %). The majority of the bacterial OTUs recovered from Tuzlagözü belonged to the Cyanobacteria (35.7 %), Bacteroidetes (35.0 %), and Proteobacteria (25.5 %) phyla. Cultivation studies revealed that the archaeal isolates were closely related to the genera Halobacterium, Haloarcula, and Halorubrum. Bacterial isolates were confined to two phyla, Proteobacteria (Alphaproteobacteria and Gammaproteobacteria classes) and Bacteroidetes. Comparative analysis showed that members of the Euryarchaeota, Bacteroidetes, Proteobacteria, and Cyanobacteria phyla were major inhabitants of the solar salterns.  相似文献   

20.
A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号