首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of NAD- and NADP-dependent isocitrate dehydrogenases (NAD-ICDH, EC 1.1.1.41, and NADP-ICDH, EC 1.1.1.42) by the level of reduced and oxidized pyridine nucleotides has been investigated in pea (Pisum sativum L.) leaves. The affinities of mitochondrial and cytosolic ICDH enzymes to substrates and inhibitors were determined on partially purified preparations in forward and reverse directions. From the kinetic data, it follows that NADP(+)- and NAD(+)-dependent isocitrate dehydrogenases in mitochondria represent a system strongly responding to the intramitochondrial NADPH and NADH levels. The NADPH, NADP(+), NADH and NAD(+) concentrations were determined by subcellular fractionation of pea leaf protoplasts using membrane filtration in mitochondria and cytosol in darkness and in the light under saturating and limiting CO(2) conditions. The cytosolic NADPH/NADP ratio was about 1 and almost constant both in darkness and in the light. In mitochondria, the NADPH/NADP ratio was low in darkness (0.2) and increased in the light, reaching 3 in limiting CO(2) conditions compared to 1 in saturating CO(2). At high reduction levels of NADP and NAD observed at limiting CO(2) in the light, i.e. when photorespiratory glycine is the main mitochondrial substrate, isocitrate oxidation in mitochondria will be suppressed and citrate will be transported to the cytosol ('citrate valve'), where the cytosolic NADP-ICDH supplies 2-oxoglutarate for the photorespiratory ammonia refixation.  相似文献   

2.
The metabolism of pyruvate and lactate by rat adipose tissue was studied. Pyruvate and lactate conversion to fatty acids is strongly concentration-dependent. Lactate can be used to an appreciable extent only by adipose tissue from fasted-refed rats. A number of compounds, including glucose, pyruvate, aspartate, propionate, and butyrate, stimulated lactate conversion to fatty acids. Based on studies of incorporation of lactate-2-(3)H and lactate-2-(14)C into fatty acids it was suggested that the transhydrogenation sequence of the "citrate-malate cycle"(1) was not providing all of the NADPH required for fatty acid synthesis from lactate. An alternative pathway for NADPH formation involving the conversion of isocitrate to alpha-ketoglutarate via cytosolic isocitrate dehydrogenase was proposed. Indirect support for this proposal was provided by the rapid labeling of glutamate from lactate-2-(14)C by adipose tissue incubated in vitro, as well as the demonstration that glutamate can be readily metabolized by adipose tissue via reactions localized largely in the cytosol. Furthermore, isolated adipose tissue mitochondria convert alpha-ketoglutarate to malate, or in the presence of added pyruvate, to citrate. Glutamate itself can not be metabolized by these mitochondria, a finding in keeping with the demonstration of negligible levels of NAD-glutamate dehydrogenase activity in adipose tissue mitochondria. Pyruvate stimulated alpha-ketoglutarate and malate conversion to citrate and reduced their oxidation to CO(2). It is proposed that under conditions of excess generation of NADH malate may act as a shuttle carrying reducing equivalents across the mitochondrial membrane. Malate at low concentrations increased pyruvate conversion $$Word$$ citrate and markedly decreased the formation of CO(2) by isolated adipose tissue mitochondria. Malate also stimulated citrate and isocitrate metabolism by these mitochondria, an effect that could be blocked by 2-n-butylmalonate. This potentially important role of malate in the regulation of carbon flow during lipogenesis is underlined by the observation that 2-n-butylmalonate inhibited fatty acid synthesis from pyruvate, but not from glucose and acetate, and decreased the stimulatory effect of pyruvate on acetate conversion to fatty acids.  相似文献   

3.
The control of isocitrate oxidation by rat liver mitochondria   总被引:3,自引:1,他引:2  
1. The factors capable of affecting the rate of isocitrate oxidation in intact mitochondria include the rate of isocitrate penetration, the activity of the NAD-specific and NADP-specific isocitrate dehydrogenases, the activity of the transhydrogenase acting from NADPH to NAD(+), the rate of NADPH oxidation by the reductive synthesis of glutamate and the activity of the respiratory chain. A quantitative assessment of these factors was made in intact mitochondria. 2. The kinetic properties of the NAD-specific and NADP-specific isocitrate dehydrogenases extracted from rat liver mitochondria were examined. 3. The rate of isocitrate oxidation through the respiratory chain in mitochondria with coupled phosphorylation is approximately equal to the maximal of the NAD-specific isocitrate dehydrogenase but at least ten times as great as the transhydrogenase activity from NADPH to NAD(+). 4. It is concluded that the energy-dependent inhibition of isocitrate oxidation by palmitoylcarnitine oxidation is due to an inhibition of the NAD-specific isocitrate dehydrogenase. 5. Kinetic studies of NAD-specific isocitrate dehydrogenase demonstrated that its activity could be inhibited by one or more of the following: an increased reduction of mitochondrial NAD, an increased phosphorylation of mitochondrial adenine nucleotides or a fall in the mitochondrial isocitrate concentration. 6. Uncoupling agents stimulate isocitrate oxidation by an extent equal to the associated stimulation of transhydrogenation from NADPH to NAD(+). 7. A technique is described for continuously measuring with a carbon dioxide electrode the synthesis of glutamate from isocitrate and ammonia.  相似文献   

4.
Effects of 1-methyl-4-phenylpyridinium ion (MPP+) on the activities of NAD+- or NADP+-linked dehydrogenases in the TCA cycle were studied using mitochondria prepared from mouse brains. Activities of NAD+- and NADP+-linked isocitrate dehydrogenases, NADH- and NADPH-linked glutamate dehydrogenases, and malate dehydrogenase were little affected by 2 mM of MPP+. However, alpha-ketoglutarate dehydrogenase activity was significantly inhibited by MPP+. Kinetic analysis revealed a competitive type of inhibition. Inhibition of alpha-ketoglutarate dehydrogenase may be one of the important mechanisms of MPP+-induced inhibition of mitochondrial respiration, and of neuronal degeneration.  相似文献   

5.
Mitochondria isolated from human term placenta were able to form citrate from malate as the only added substrate. While mitochondria were incubated in the presence of Mn2+ the citrate formation was stimulated significantly both by NAD+ and NADP+ and was inhibited by hydroxymalonate, arsenite, butylmalonate and rotenone. It is concluded that NAD(P)-linked malic enzyme is involved in the conversion of malate to citrate in these mitochondria. It has also been shown that the conversion of cholesterol to progesterone by human term placental mitochondria incubated in the presence of malate was stimulated by NAD+ and NADP+ and inhibited by arsenite and fluorocitrate. This suggests that the stimulation by malate of progesterone biosynthesis depends not only on the generation of NADPH by NAD(P)-linked malic enzyme, but also on NADPH formed during further metabolism of pyruvate to isocitrate which is in turn efficiently oxidized by NADP+-linked isocitrate dehydrogenase.  相似文献   

6.
The total production of alpha-ketoglutarate from glutamate and isocitrate was estimated in isolated rat liver mitochondria. Mitochondrial alanine aminotransferase converts glutamate to alpha-ketoglutarate [A.K. Groen et al. (1982) Eur. J. Biochem. 122, 87-93], thus participating in the net formation of the tricarboxylic acid cycle intermediates from glutamate. The present investigation indicates a significant contribution of the alanine aminotransferase reaction to glutamate oxidation by isolated rat liver mitochondria in the presence of bicarbonate. It amounted to 41-74 and 7-31% of the total utilization of glutamate in States 4 and 3, respectively, in various conditions in vitro, at pyruvate concentrations in the range of 0.1-10 mM. The participation of glutamate in the total production of alpha-ketoglutarate at physiological concentrations of glutamate, citrate, and isocitrate varied in the range of 72-82%. It was calculated that alpha-ketoglutarate formation by the reaction of alanine aminotransferase amounted to 30 and 5% of the total mitochondrial alpha-ketoglutarate production in States 4 and 3, respectively, at physiological concentrations of its precursors and in the presence of 0.5 mM malate and 0.1 mM pyruvate. It constituted 77-97% of the net production of the tricarboxylic acid cycle intermediates from glutamate in rat liver mitochondria. The importance of alpha-ketoglutarate production via the alanine aminotransferase reaction under various physiological conditions is discussed.  相似文献   

7.
This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase??crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact??and alamethicin??permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca2+, (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca2+, (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca2+ and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.  相似文献   

8.
Pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids which were transaminated products of valine, leucine, and isoleucine inhibited glycine decarboxylation by rat liver mitochondria. However, glycine synthesis (the reverse reaction of glycine decarboxylation) was stimulated by those alpha-keto acids with the concomitant decarboxylation of alpha-keto acid added in the absence of NADH. Both the decarboxylation and the synthesis of glycine by mitochondrial extract were affected similarly by alpha-ketoglutarate and branched-chain alpha-keto acids in the absence of pyridine nucleotide, but not by pyruvate. This failure of pyruvate to have an effect was due to the lack of pyruvate oxidation activity in the mitochondrial extract employed. It indicated that those alpha-keto acids exerted their effects by providing reducing equivalents to the glycine cleavage system, possibly through lipoamide dehydrogenase, a component shared by the glycine cleavage system and alpha-keto acid dehydrogenase complexes. On the decarboxylation of pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids in intact mitochondria, those alpha-keto acids inhibited one another. In similar experiments with mitochondrial extract, decarboxylations of alpha-ketoglutarate and branched-chain alpha-keto acid were inhibited by branched-chain alpha-keto acid and alpha-ketoglutarate, respectively, but not by pyruvate. NADH was unlikely to account for the inhibition. We suggest that the lipoamide dehydrogenase component is an indistinguishable constituent among alpha-keto acid dehydrogenase complexes and the glycine cleavage system in mitochondria in nature, and that lipoamide dehydrogenase-mediated transfer of reducing equivalents might regulate alpha-keto acid oxidation as well as glycine oxidation.  相似文献   

9.
The contributions of NAD-specific and NADP-specific isocitrate dehydrogenases to isocitrate oxidation in isolated intact rat liver mitochondria were examined using DL-threo-alpha-methylisocitrate (3-hydroxy-1,2,3-butanetricarboxylate) to specifically inhibit flux through NADP-specific isocitrate dehydrogenase. Under a range of conditions tested with respiring mitochondria, the rate of isocitrate oxidation was decreased by about 20--40% by inhibition of NADP-isocitrate dehydrogenase, and matrix NADP became more oxidized. (a) For mitochondria incubated with externally added DL-isocitrate and citrate, the rate of isocitrate oxidation obtained by extrapolation to infinite alpha-methylisocitrate concentration was approximately 70% of the uninhibited rate in both state 3 and state 4. (b) With pyruvate plus malate added as substrates of citric acid cycle oxidation and isocitrate generated intramitochondrially, a concentration of alpha-methylisocitrate (400 microM) sufficient for 99.99% inhibition of NADP-isocitrate dehydrogenase inhibited isocitrate oxidation in states 4 and 3 by 21 +/- 6% and 19 +/- 11% (mean +/- SEM), respectively. (c) With externally added isocitrate and citrate, the addition of NH4Cl increased isocitrate oxidation by 3--4-fold, decreased NADPH levels by 30--40% and 2-oxoglutarate accumulation by about 40%. The further addition of 600 microM alpha-methylisocitrate decreased the NH4Cl-stimulated isocitrate oxidation by about 40% and decreased NADPH to about 30% of the level prevailing in the absence of NH4Cl; nevertheless, the rate of isocitrate oxidation was still twice as large in the presence of NH4Cl and alpha-methylisocitrate as in their absence. Experiments were also performed with intact mitochondria incubated with respiratory inhibitors to determine additional factors which might affect the flux through the two isocitrate dehydrogenases. (a) In the coupled reduction of acetoacetate by isocitrate, where the rate of reoxidation of reduced pyridine nucleotides is limited by NAD-specific 3-hydroxybutyrate dehydrogenase, 85--100% of the rate of 3-hydroxybutyrate formation was retained in the presence of 400--900 microM alpha-methylisocitrate. (b) In a system where the rate of isocitrate oxidation is limited by the rate of NADPH reoxidation by glutathione reductase, the rate of glutathione reduction extrapolated to infinite alpha-methylisocitrate concentration was from 20--40% of the uninhibited rate. (c) In the coupled synthesis of glutamate from isocitrate and NH4Cl, where the reoxidation of NADPH and NADH can occur via glutamate dehydrogenase, the rate of glutamate production extrapolated to infinite alpha-methylisocitrate concentration was about 60% of the uninhibited rate.  相似文献   

10.
V B Lawlis  T E Roche 《Biochemistry》1981,20(9):2519-2524
Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.  相似文献   

11.
Phthalonate was found to inhibit the following parameters in higher plant mitochondria; glutamate and isocitrate oxidation, swelling in ammonium citrate and glutamate (but not malate), citrate-isocitrate exchange, oxalacetate entry and efflux, and NAD-linked malic enzyme. Phthalonate had little effect on malate, NADH, or oxoglutarate oxidation, nor on malate, isocitrate, or glutamate dehydrogenases. The results indicate that phthalonate is an inhibitor of oxalacetate, glutamate, and citrate transport in plant mitochondria, but not of oxoglutarate or dicarboxylate transport.  相似文献   

12.
In basic solutions, pyruvate enolizes and reacts (through its 3-carbon) with the 4-carbon of the nicotinamide ring of NAD+, yielding an NAD-pyruvate adduct in which the nicotinamide ring is in the reduced form. This adduct is a strong inhibitor of lactate dehydrogenase, presumably because it binds simultaneously to the NADH and pyruvate sites. The potency of the inhibition, however, is muted by the adduct's tendency to cyclize to a lactam. We prepared solutions of the pyruvate adduct of NAD+ and of NAD+ analogues in which the -C(O)NH2 of NAD+ was replaced with -C(S)NH2, -C(O)CH3, and -C(O)H. Of the four, only the last analogue, 3-[4-(reduced 3-pyridine aldehyde-adenine dinucleotide)]-pyruvate (RAP) cannot cyclize and it was found to be the most potent inhibitor of beef heart and rat brain lactate dehydrogenases. The inhibitor binds very tightly to the NADH site (Ki approximately 1 nM for the A form). Even at high concentrations (20 microM), RAP had little or no effect on rat brain glyceraldehyde-3-phosphate, pyruvate, alpha-ketoglutarate, isocitrate, soluble and mitochondrial malate, and glutamate dehydrogenases. The glycolytic enzymes, hexokinase and phosphofructokinase, were similarly unaffected. RAP strongly inhibited lactate production from glucose in rat brain extracts but was less effective in inhibiting lactate production from glucose in synaptosomes.  相似文献   

13.
The effects of coenzymes NAD(P) and NAD(P)H on the kinetics of the ox liver glutamate dehydrogenase reaction have been studied. The oxidized coenzymes were shown to activate alpha-ketoglutarate amination at inhibiting concentrations of NADH and NADPH. The reduced coenzymes, NADH and NADPH, inhibit glutamate deamination with both NAD and NADP as coenzymes. The data obtained are discussed in terms of literature data on the mechanisms of the coenzyme effects on the glutamate dehydrogenase activity and are inconsistent with the theory of direct ligand--ligand interactions. It was shown that the peculiarities of the glutamate dehydrogenase kinetics can easily be interpreted in the light of the two state models.  相似文献   

14.
Rat liver microsomes catalyze a vanadate-stimulated oxidation of NAD(P)H, which is augmented by paraquat and suppressed by superoxide dismutase, but not by catalase. NADPH oxidation was a linear function of the concentration of microsomes in the absence of vanadate, but was a saturating function in the presence of vanadate. Microsomes did not catalyze a vanadate-stimulated oxidation of reduced nicotinamide mononucleotide (NMNH), but gained this ability when NADPH was also present. When the concentration of NMNH was much greater than that of NADPH a minimal average chain length could be calculated from 1/2 the ratio of NMNH oxidized per NADPH added. The term chain length, as used here, signifies the number of molecules of NMNH oxidized per initiating event. Chain length could be increased by increasing [vanadate] and [NMNH] and by decreasing pH. Chain lengths in excess of 30 could easily be achieved. The Km for NADPH, arrived at from saturation of its ability to trigger NMNH oxidation by microsomes in the presence of vanadate, was 1.5 microM. Microsomes or the outer mitochondrial membrane was able to catalyze the vanadate-stimulated oxidation of NADH or NADPH but only the oxidation of NADPH was accelerated by paraquat. The inner mitochondrial membrane was able to cause the vanadate-stimulated oxidation of NAD(P)H and in this case paraquat stimulated the oxidation of both pyridine coenzymes. Our results indicate that vanadate stimulation of NAD(P)H oxidation by biomembranes is a consequence of vanadate stimulation of NAD(P)H or NMNH oxidation by O-2, rather than being due to the existence of vanadate-stimulated NAD(P)H oxidases or dehydrogenases.  相似文献   

15.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Laties GG 《Plant physiology》1983,72(4):953-958
The oxidation isotherms for citrate and isocitrate by potato (Solanum tuberosum var. Russet Burbank) mitochondria in the presence of NAD differ markedly. Citrate oxidation shows positively cooperative kinetics with a sigmoid isotherm, whereas isocitrate oxidation shows Michaelis-Menten kinetics at concentrations up to 3 millimolar, and cooperative kinetics thereafter up to 30 millimolar. In the absence of exogenous NAD, the isocitrate isotherm is sigmoid throughout. The dual isotherm for isocitrate oxidation in the presence of exogenous NAD reflects the operation of two forms of isocitrate dehydrogenase, one in the matrix and one associated with the inner mitochondrial membrane. Whereas in intact mitochondria the activity of the membrane-bound enzyme is insensitive to rotenone, and to butylmalonate, an inhibitor of organic acid transport, isocitrate oxidation by the soluble matrix enzyme is inhibited by both. The membrane-bound isocitrate dehydrogenase does not operate through the NADH dehydrogenase on the outer face of the inner mitochondrial membrane, and is thus considered to face inward. The regulatory potential of isocitrate dehydrogenase in potato mitochondria may be realized by the apportionment of the enzyme between its soluble and bound forms.  相似文献   

17.
The yeast Candida parapsilosis possesses two routes of electron transfer from exogenous NAD(P)H to oxygen. Electrons are transferred either to the classical cytochrome pathway at the level of ubiquinone through an NAD(P)H dehydrogenase, or to an alternative pathway at the level of cytochrome c through another NAD(P)H dehydrogenase which is insensitive to antimycin A. Analyses of mitoplasts obtained by digitonin/osmotic shock treatment of mitochondria purified on a sucrose gradient indicated that the NADH and NADPH dehydrogenases serving the alternative route were located on the mitochondrial inner membrane. The dehydrogenases could be differentiated by their pH optima and their sensitivity to amytal, butanedione and mersalyl. No transhydrogenase activity occurred between the dehydrogenases, although NADH oxidation was inhibited by NADP+ and butanedione. Studies of the effect of NADP+ on NADH oxidation showed that the NADH:ubiquinone oxidoreductase had Michaelis-Menten kinetics and was inhibited by NADP+, whereas the alternative NADH dehydrogenase had allosteric properties (NADH is a negative effector and is displaced from its regulatory site by NAD+ or NADP+).  相似文献   

18.
The oxidation of 14C-labelled branched-chain alpha-keto acids corresponding to the branched-chain amino acids valine, isoleucine and leucine has been studied in isolated mitochondria from heart, liver and skeletal muscle. 1. Heart and liver mitochondria have similar capacities to oxidize these alpha-keto acids based on protein content. Skeletal muscle mitochondria also show significant activity. 2. Half maximum rates are obtained with approximately 0.1 mM of the alpha-keto acids under optimal conditions. Added NAD and CoA had no effect on the oxidation rate, showing that endogenous mitochondrial NAD and CoA are required for the oxidation. 3. Addition of carnitine esters of fatty acids (C6--C16), succinate, pyruvate, or alpha-ketoglutarate inhibited the oxidation of the branched chain alpha-keto acids, especially in a high-energy state (no ADP added). In heart mitochondria the addition of AD (low-energy state) decreased the inhibitory effects of acylcarnitines of medium chain length or of pyruvate, and abolished the inhibitory effect of succinate. It is suggested that the oxidation rate is regulated mainly by the redox state of the mitochondria under the conditions used. 4. The results are discussed in relation to the regulation of branched-chain amino acid metabolism in the body.  相似文献   

19.
Glutamate synthase was purified about 250-fold from Thiobacillus thioparus and was characterized. The molecular weight was estimated as 280,000 g/mol. The enzyme showed absorption maxima at 280, 380, and 450 nm and was inhibited by Atebrin, suggesting that T. thioparus glutamate synthase is a flavoprotein. The enzyme activity was also inhibited by iron chelators and thiolbinding agents. The enzyme was specific for reduced nicotinamide adenine dinucleotide phosphate (NADPH) and alpha-ketoglutarate, but L-glutamine was partially replaced by ammonia as the amino donor. The Km values of glutamate synthase for NADPH, alpha-ketoglutarate, and glutamine were 3.0 muM, 50 muM, and 1.1 mM, respectively. The enzyme had a pH optimum between 7.3 and 7.8. Glutamate synthase from T. thioparus was relatively insensitive to feedback inhibition by single amino acids but was sensitive to the combined effects of several amino acids. Enzymes involved in glutamate synthesis in T. thioparus were studied. Glutamine synthetase and glutamate synthase, as well as two glutamate dehydrogenases (NADH and NADPH dependent), were present in this organism. This levels of glutamate synthase and glutamate dehydrogenase were similar in T. thioparus grown on 0.7 or 7.0 mM ammonium sulfate. The sum of the activities of both glutamate dehydrogenases was only 1/25 of that of glutamate synthase under the assay conditions. It was concluded that the glutamine pathway is important for ammonia assimilation in this autotrophic bacterium.  相似文献   

20.
Both the external oxidation of NADH and NADPH in intact potato (Solanum tuberosum L. cv. Bintje) tuber mitochondria and the rotenone-insensitive internal oxidation of NADPH by inside-out submitochondrial particles were dependent on Ca2+. The stimulation was not due to increased permeability of the inner mitochondrial membrane. Neither the membrane potential nor the latencies of NAD(+)-dependent and NADP(+)-dependent malate dehydrogenases were affected by the addition of Ca2+. The pH dependence and kinetics of Ca(2+)-dependent NADPH oxidation by inside-out submitochondrial particles were studied using three different electron acceptors: O2, duroquinone and ferricyanide. Ca2+ increased the activity with all acceptors with a maximum at neutral pH and an additional minor peak at pH 5.8 with O2 and duroquinone. Without Ca2+, the activity was maximal around pH 6. The Km for NADPH was decreased fourfold with ferricyanide and duroquinone, and twofold with O2 as acceptor, upon addition of Ca2+. The Vmax was not changed with ferricyanide as acceptor, but increased twofold with both duroquinone and O2. Half-maximal stimulation of the NADPH oxidation was found at 3 microM free Ca2+ with both O2 and duroquinone as acceptors. This is the first report of a membrane-bound enzyme inside the inner mitochondrial membrane which is directly dependent on micromolar concentrations of Ca2+. Mersalyl and dicumarol, two potent inhibitors of the external NADH dehydrogenase in plant mitochondria, were found to inhibit internal rotenone-insensitive NAD(P)H oxidation, at the same concentrations and in manners very similar to their effects on the external NAD(P)H oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号