首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five years ago, Arctomecon humilis, a pollinator-dependent, endangered poppy globally restricted to the extreme northeastern Mojave Desert in southwestern Utah, was pollinated by native bee species and the European honey bee. Follow-up studies beginning in 2012 failed to find the two most important native bee pollinator species, one of which, Perdita meconis, is a strict poppy specialist. We had four objectives: (1) confirm the status of formerly important native bee pollinators; (2) determine the role of the Africanized honey bee which reportedly invaded southern Utah in 2008; (3) examine the effect of the ostensible change in pollinator fauna on fruit set in four populations; (4) describe the pollination proficiency of species that presently visit poppy flowers. For the fourth consecutive survey, P. meconis was absent; its local extinction in Utah now seems certain. Another previously important native pollinator, Eucera quadricincta, was very rare. Also uncommon was the European honey bee, having been largely replaced by Africanized honey bees which have become, in most populations, the prevalent pollinator. Africanized bees forage early in the day and quickly strip flowers of their copious pollen leaving little for native bees. We argue that the invasion of southern Utah by Africanized bees is the most likely cause of the severe disruption of the A. humilis pollination system. The ascension of the Africanized bee is also associated with reduced fruit set in all poppy populations, especially those where plants are sparse. Arctomecon humilis now appears to depend mostly on an invasive species for pollination.  相似文献   

2.
Little is known of the potential coevolution of flowers and bees in changing, biodiverse environments. Female solitary bees, megachilids and Centris , and their nest pollen provisions were monitored with trap nests over a 17-year period in a tropical Mexican biosphere reserve. Invasion by feral Apis (i.e. Africanized honey bees) occurred after the study began, and major droughts and hurricanes occurred throughout. Honey bee competition, and ostensibly pollination of native plants, caused changes in local pollination ecology. Shifts in floral hosts by native bees were common and driven by plant phylogenetics, whereby plants of the same families or higher taxa were substituted for those dominated by honey bees or lost as a result of natural processes. Two important plant families, Anacardiaceae and Euphorbiaceae, were lost to competing honey bees, but compensated for by greater use of Fabaceae, Rubiaceae, and Sapotaceae among native bees. Natural disasters made a large negative impact on native bee populations, but the sustained presence of Africanized honey bees did not. Over 171 plant species comprised the pollen diets of the honey bees, including those most important to Centris and megachilids (72 and 28 species, respectively). Honey bee pollination of Pouteria (Sapotaceae) plausibly augmented the native bees' primary pollen resource and prevented their decline. Invasive generalist pollinators may, however, cause specialized competitors to fail, especially in less biodiverse environments.  No claim to original US government works. Journal compilation © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 152–160.  相似文献   

3.
Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.  相似文献   

4.
Management increases genetic diversity of honey bees via admixture   总被引:1,自引:0,他引:1  
Harpur BA  Minaei S  Kent CF  Zayed A 《Molecular ecology》2012,21(18):4414-4421
The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.  相似文献   

5.
Hygienic behavior is a desirable trait in honey bees (Apis mellifera L.), as hygienic bees quickly remove diseased brood, interrupting the infectious cycle. Hygienic lines of honey bees appear to be more sensitive to the odors of dead and diseased honey bee brood, and Africanized honey bees are generally more hygienic than are European honey bees. We compared the number of sensilla placodea, antennal sensory structures involved in the perception of odor, in 10 bees from each of six hygienic and four non-hygienic colonies of Africanized honey bees. The sensilla placodea of three of the terminal segments (flagellomeres) of the right antenna of each bee were counted with a scanning electron microscope. There were no significant differences in the mean numbers of sensilla placodea between the hygienic and non-hygienic bees, though the variance was higher in the hygienic group. Flagellomere 4 had significantly more sensilla placodea than flagellomeres 6 and 8. However, there was no significant difference between the other two flagellomeres. As hygienic bees are capable of identifying dead, injured, or infested brood inside a capped brood cell, sensilla placodea probably have an important role in enabling worker bees to sense sick brood. However, we did not find greater numbers of this sensory structure in the antennae of hygienic, compared to non-hygienic Africanized honey bees.  相似文献   

6.
Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.  相似文献   

7.
Urban landscapes provide habitat for many species, including domesticated and feral honey bees, Apis mellifera L. (Hymenoptera: Apidae). With recent losses of managed honey bee colonies, there is increasing interest in feral honey bee colonies and their potential contribution to pollination services in agricultural, natural, and urban settings. However, in some regions the feral honey bee population consists primarily of Africanized honey bees. Africanized honey bees (AHB) are hybrids between European honey bees and the African honey bee, Apis mellifera scutellataLepeletier, and have generated economic, ecological, and human health concerns because of their aggressive behavior. In this study, we used two long‐term datasets (7–10 years) detailing the spatial and temporal distribution of AHB colonies in Tucson, AZ, USA, where feral colonies occupy a variety of cavities including water meter boxes. A stage‐structured matrix model was used to elucidate the implications of nest site selection and the effects of colony terminations on the structure and dynamics of the AHB population. Our results suggest that Tucson's AHB population is driven by a relatively small number of ‘source’ colonies that escape termination (ca. 0.165 colonies per km2 or 125 colonies in total), although immigrating swarms and absconding colonies from the surrounding area may have also contributed to the stability of the Tucson AHB population. Furthermore, the structure of the population has likely been impacted by the number and spatial distribution of water meter boxes across the city. The study provides an example of how urban wildlife populations are driven by interactions among landscape structure, human management, and behavioral traits conferred by an invasive genotype.  相似文献   

8.
Honey bee (Apis mellifera L.) colonies with either European or Africanized queens mated to European or Africanized drones alone or in combination were tested for defensive behavior using a breath test. The most defensive colonies were those with European or Africanized queens mated to Africanized drones. In colonies where both European and Africanized patrilines existed, most of the workers participating in nest defense behavior for the first 30 s after a disturbance were of African patrilines. Nest defense behavior appears to be genetically dominant in honey bees.  相似文献   

9.
The decline of both managed and wild bee populations has been extensively reported for over a decade now, with growing concerns amongst the scientific community. Also, evidence is growing that both managed and feral honey bees may exacerbate threats to wild bees. In Australia, there are over 1600 native bee species and introduced European honey bees (Apis mellifera) have established throughout most landscapes. There is a major gap in knowledge of the interactions between honey bees and native bees in Australian landscapes, especially floral resource use.Here we report on the pollen diets of wild bees in protected areas of coastal heathland, an ecosystem characterised by mass flowering in late winter and spring. We sampled bees within three sites and DNA metabarcoding was used to compare the pollen diets of honey bees and native bees. We recorded 2, 772 bees in total, with 13 genera and 18 described species identified. Apis mellifera was the most common species across all locations, accounting for 42% of all bees collected. Native bee genera included eusocial Tetragonula (stingless bees) (37%), and semi-social Exoneura and Braunsapis (19.8% combined). Metabarcoding data revealed both Tetragonula and honey bees have wide foraging patterns, and the bipartite network overall was highly generalised (H2’ = 0.24). Individual honey bees carried pollen of 7–29 plant species, and significantly more species than all other bees. We found niche overlap in the diets of honey bees and native bees generally (0.42), and strongest overlap with stingless bees (0.70) and species of Braunsapis (0.62). A surprising finding was that many species carried pollen from Restionaceae and Cyperaceae, families generally considered to be predominantly wind-pollinated in Australia. Our study showed introduced honey bee use of resources overlaps with that of native bees in protected heathlands, but there are clear differences in their diet preferences.  相似文献   

10.
In recent years, studies based on isoenzymatic patterns of geographic variation have revealed that what is usually called the Africanized honey bee does not constitute a single population. Instead, several local populations exist with various degrees of admixture with European honey bees. In this paper, we evaluated new data on morphometric patterns of Africanized honey bees collected at 42 localities in Brazil, using univariate and multivariate (canonical) trend surface and spatial autocorrelation analyses. The clinal patterns of variation found for genetically independent characters (wing size characters and some wing venation angles) are concordant with previous studies of malate dehydrogenase (MDH) allelic frequencies and support the hypothesis that larger honey bees in southern and southeastern Brazil originated by racial admixture in the initial phases of African honey bee colonization. Geographic variation patterns of Africanized honey bee populations reflect a demic diffusion process in which European genes were gradually lost because of the higher fitness of the African gene pool in Neotropical environmental conditions.  相似文献   

11.
Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee.  相似文献   

12.
A study of the most important polliniferous plants for European and Africanized honeybees (Apis mellifera L.) was made in Quintana Roo state. Comparisons were made between the plants visited by both bee types in order to determine whether there were qualitative or quantitative differences in their choice of plant species. Also some foraging strategies of the honeybees were analysed. Pollen from pollen load samples was acetolysed and mounted on slides. Subsequently the pollen grains were identified, counted and photographed. A total of 206 pollen load samples were collected at Palmas and St. Teresa during two years. The most frequent species in the pollen load samples from European and Africanized honeybees were Cecropia peltata, Metopium brownei, Lonchocarpus sp. 2, Viguiera dentata, Eragrostis sp. 1, Bursera simaruba and Eupatorium albicaule. Both types of honey bees show a high reliance on pollen from only a few species, the first five named above comprised around 50% of all the mean percentage frequencies. Families that contributed with the largest number of pollen species were Fabaceae, Asteraceae, Boraginaceae, Convolvulaceae, Euphorbiaceae, Sapindaceae, Poaceae, Myrtaceae, Sapotaceae and Tiliaceae. C. peltata, Trema micrantha, B. simaruba, Eugenia sp. 1, Thouinia canesceras, Pouteria sp. 1, Mimosa bahamensis and V. dentata, were the pollen species with the largest percentages of occurrence in both European and Africanized bee pollen load samples, and also represent a "long-term" food resources during the year.  相似文献   

13.
Honey bees, Apis mellifera L., probe for nectar from robbery slits previously made by male carpenter bees, Xylocopa virginica (L.), at the flowers of rabbiteye blueberry, Vaccinium ashei Reade. This relationship between primary nectar robbers (carpenter bees) and secondary nectar thieves (honey bees) is poorly understood but seemingly unfavorable for V. ashei pollination. We designed two studies to measure the impact of nectar robbers on V. ashei pollination. First, counting the amount of pollen on stigmas (stigmatic pollen loading) showed that nectar robbers delivered fewer blueberry tetrads per stigma after single floral visits than did our benchmark pollinator, the southeastern blueberry bee, Habropoda laboriosa (F.), a recognized effective pollinator of blueberries. Increasing numbers of floral visits by carpenter bee and honey bee robbers yielded larger stigmatic loads. As few as three robbery visits were equivalent to one legitimate visit by a pollen-collecting H. laboriosa female. More than three robbery visits per flower slightly depressed stigmatic pollen loads. In our second study, a survey of 10 commercial blueberry farms demonstrated that corolla slitting by carpenter bees (i.e., robbery) has no appreciable affect on overall V. ashei fruit set. Our observations demonstrate male carpenter bees are benign or even potentially beneficial floral visitors of V ashei. Their robbery of blueberry flowers in the southeast may attract more honey bee pollinators to the crop.  相似文献   

14.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
To test the hypothesis that colonies of honey bees composedof workers with faster rates of adult behavioral developmentare more defensive than colonies composed of workers with slowerbehavioral development, we determined whether there is a correlationbetween genetic variation in worker temporal polyethism andcolony defensiveness. There was a positive correlation for thesetwo traits, both for European and Africanized honey bees. Thecorrelation was larger for Africanized bees, due to differencesbetween Africanized and European bees, differences in experimentaldesign, or both. Consistent with these results was the findingthat colonies with a higher proportion of older bees were moredefensive than colonies of the same size that had a lower proportionof older bees. There also was a positive correlation betweenrate of individual behavioral development and the intensityof colony flight activity, and a negative correlation betweencolony defensiveness and flight activity. This suggests thatthe relationship between temporal polyethism and colony defensivenessmay vary with the manner in which foraging and defense dutiesare allocated among a colony's older workers. These resultsindicate that genotypic differences in rates of worker behavioraldevelopment can influence the phenotype of a honey bee colonyin a variety of ways.  相似文献   

16.
Africanized honey bees (Apis mellifera, Hymenoptera: Apidae) in Brazil are tolerant of infestations with the exotic ectoparasitic mite, Varroa destructor (Mesostigmata: Varroidae), while the European honey bees used in apiculture throughout most of the world are severely affected. Africanized honey bees are normally kept in hives with both naturally built small width brood cells and with brood cells made from European-sized foundation, yet we know that comb cell size has an effect on varroa reproductive behavior. Three types (sizes) of brood combs were placed in each of six Africanized honey bee colonies: new (self-built) Africanized comb, new Italian comb (that the bees made from Italian-sized commercial foundation), and new Carniolan comb (built naturally by Carniolan bees). About 100 cells of each type were analyzed in each colony. The Africanized comb cells were significantly smaller in (inner) width (4.84 mm) than the European-sized comb cells (5.16 and 5.27 mm for Italian and Carniolan cells, respectively). The brood cell infestation rates (percentage cells infested) were significantly higher in the Carniolan-sized comb cells (19.3%) than in the Italian and Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of invading adult female mites per 100 brood cells (24.4) than did the Italian-sized cells (17.7) and the natural-sized Africanized worker brood cells (15.6). European-sized worker brood cells were always more infested than the Africanized worker brood cells in the same colony. There was a highly significant correlation (P<0.01) between cell width and the rate of infestation with varroa in four of the six colonies. The small width comb cells produced by Africanized honey bees may have a role in the ability of these bees to tolerate infestations by Varroa destructor, furthermore it appears that natural-sized comb cells are superior to over-sized comb cells for disease resistance.  相似文献   

17.
The increasing demand for insect pollinated crops and high recent losses of honey bee colonies raise concerns about food security. Systemic insecticides are recognized as one of the drivers of worldwide honey and wild bee declines. Particularly honey bees in agricultural environments are exposed to pesticides when they collect crop pollen and nectar. However, landscape scale studies which analyze pollen use and foraging distances of honey bees on mass-flowering crops like maize to evaluate potential exposure risks are currently lacking. In an experimental approach on a landscape scale we took advantage of intra-colonial dance communication to gather information about the location of utilized pollen resources. During maize flowering, four observation hives were placed in and rotated between 11 different landscapes which covered a gradient from low to high maize acreage. A higher frequency of dances for foraging locations on maize fields compared to other land use types shows that maize is an intensively used pollen resource for honey bee colonies. Mean foraging distances were significantly shorter for maize pollen than for other pollen origins. The percentage of maize pollen foragers did not increase with maize acreage in the landscape. The proportion of grassland area providing alternative pollen sources did not reduce the percentage of maize pollen foragers. Our findings allow estimating the distance-related exposure risk of honey bee colonies to pollen from surrounding maize fields treated with systemic insecticides. Similarly, the results can be used to estimate the exposure to transgenic maize pollen, which is relevant for honey production in European countries. Provision of alternative pollen resources within agri-environmental schemes could potentially reduce exposure risk to pesticide contaminated crop pollen.  相似文献   

18.
Native bees provide insurance against ongoing honey bee losses   总被引:2,自引:0,他引:2  
One of the values of biodiversity is that it may provide 'biological insurance' for services currently rendered by domesticated species or technology. We used crop pollination as a model system, and investigated whether the loss of a domesticated pollinator (the honey bee) could be compensated for by native, wild bee species. We measured pollination provided to watermelon crops at 23 farms in New Jersey and Pennsylvania, USA, and used a simulation model to separate the pollen provided by honey bees and native bees. Simulation results predict that native bees alone provide sufficient pollination at > 90% of the farms studied. Furthermore, empirical total pollen deposition at flowers was strongly, significantly correlated with native bee visitation but not with honey bee visitation. The honey bee is currently undergoing extensive die-offs because of Colony Collapse Disorder. We predict that in our region native bees will buffer potential declines in agricultural production because of honey bee losses.  相似文献   

19.
A 2-yr field trial (2001 and 2002) and 1-yr semifield trial (2002) were conducted to evaluate the effect of transgenic herbicide (glyphosate) -tolerant canola Brassica napus L. pollen on larval and adult honey bee, Apis mellifera L., workers. In the field trial, colonies of honey bees were moved to transgenic or nontransgenic canola fields (each at least 40 hectares) during bloom and then sampled for larval survival and adult recovery, pupal weight, and hemolymph protein concentrations. No differences in larval survival, adult recovery, and pupal weight were detected between colonies placed in nontransgenic canola fields and those in transgenic canola fields. Colonies placed in the transgenic canola fields in the 2002 field experiment showed significantly higher hemolymph protein in newly emerged bees compared with those placed in nontransgenic canola field; however, this difference was not detected in the 2001 field experiment. In the semifield trial, bee larvae were artificially fed with bee-collected transgenic and nontransgenic canola pollen and returned to their original colonies. Larval survival, pupal survival, pupal weight, and hemolymph protein concentration of newly emerged adults were measured. There were no significant differences in any of the parameters measured between larvae that were fed transgenic canola pollen and those fed nontransgenic corn pollen. Results from this study suggest that transgenic canola pollen does not have adverse effects on honey bee development and that the use of transgenic canola dose not pose any threat to honey bees.  相似文献   

20.
Summary Seasonal foraging patterns were investigated using six observation colonies maintained in the Okavango Delta, Botswana. Pollen collection, flight from the hive, and recruitment for pollen and nectar sources occurred throughout the 11 months of the study. However, the distribution of foraging activity throughout the day changed seasonally. Colonies emphasized recruitment for pollen sites throughout most of the year. Brood production occurred in all months except May, and there was a significant, positive correlation between the proportion of recruitment activity devoted to pollen sources and the amount of brood comb in the colonies. The seasonal foraging patterns ofscutellata in the Okavango were similar to those of Africanized honey bees in the neotropics. The extended foraging season and emphasis on pollen collection may be associated with the high swarming rates and migrational movements of tropical honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号