首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Overweight and obese children demonstrate inferior motor performance for strength- and power-related activities requiring support or lifting of body weight. Our purpose here was to determine whether the inferior performance could be attributed to a lower strength to muscle area ratio in the obese. Eleven nonobese (16.6% fat) and 13 obese (35.5% fat) boys (9-13 years old) volunteered for the study. Peak torque was measured during voluntary isometric and isokinetic elbow flexion and knee extension at four joint angles and four velocities, respectively. The contractile properties, twitch torque, time to peak torque, and half-relaxation time were evoked for the elbow flexors by percutaneous stimulation. Elbow flexor and knee extensor cross-sectional areas (CSA) were determined by computed axial tomography taken at the mid-upper arm and mid-thigh, respectively. Isometric and isokinetic elbow flexion and knee extension strength normalized for body weight were significantly (p less than 0.05) higher in the nonobese compared to the obese boys. There were no significant (p greater than 0.05) differences, however, between groups for elbow flexor and knee extensor CSA or for absolute and relative (normalized for muscle CSA or the product of muscle CSA and height, the latter accounting for differences in moment arm length) isometric, isokinetic, or evoked twitch torque for elbow flexion or knee extension. Likewise, there were no differences between groups for the time-related contractile properties, time to peak torque, or half-relaxation time. These findings suggest that there is no difference in the intrinsic strength or contractile properties of the elbow flexor and knee extensor muscles between obese and nonobese pre-adolescent boys and that other factors, such as the handicapping effect of excess fat mass, probably account for the reduced motor performance of the obese child.  相似文献   

2.
The purposes of this study were to 1) determine the effect of concentric isokinetic training on strength and cross-sectional area (CSA) of selected extensor and flexor muscles of the forearm and leg, 2) examine the potential for preferential hypertrophy of individual muscles within a muscle group, 3) identify the location (proximal, middle, or distal level) of hypertrophy within an individual muscle, and 4) determine the effect of unilateral concentric isokinetic training on strength and hypertrophy of the contralateral limbs. Thirteen untrained male college students [mean age 25.1 +/- 6.1 (SD) yr] volunteered to perform six sets of 10 repetitions of extension and flexion of the nondominant limbs three times per week for 8 wk, using a Cybex II isokinetic dynamometer. Pretraining and posttraining peak torque and muscle CSA measurements for both the dominant and nondominant limbs were determined utilizing a Cybex II isokinetic dynamometer and magnetic resonance imaging scanner, respectively. The results indicated significant (P less than 0.0008) hypertrophy in all trained muscle groups as well as preferential hypertrophy of individual muscles and at specific levels. None of the muscles of the contralateral limbs increased significantly in CSA. In addition, significant (P less than 0.0008) increases in peak torque occurred for trained forearm extension and flexion as well as trained leg flexion. There were no significant increases in peak torque, however, for trained leg extension or for any movement in the contralateral limbs. These data suggest that concentric isokinetic training results in significant strength and hypertrophic responses in the trained limbs.  相似文献   

3.
Specificity of joint angle in isometric training   总被引:1,自引:0,他引:1  
Six healthy women (21.8 +/- 0.4 y) did isometric strength training of the left plantarflexors at an ankle joint angle of 90 degrees. Training sessions, done 3 times per week for 6 weeks, consisted of 2 sets of ten 5 s maximal voluntary contractions. Prior to and following the training, and in random order, voluntary and evoked isometric contraction strength was measured at the training angle and at additional angles: 5 degrees, 10 degrees, 15 degrees, and 20 degrees intervals in the plantarflexion and dorsiflexion directions. Evoked contraction strength was measured as the peak torque of maximal twitch contractions of triceps surae. Training increased voluntary strength at the training angle and the two adjacent angles only (p less than 0.05). Time to peak twitch torque was not affected by training. Twitch half relaxation time increased after training (p = 0.013), but the increase was not specific to the training angle. There was a small (1.1%, p less than 0.05) increase in calf circumference after training. Evoked twitch torque did not increase significantly at any joint angle. It was therefore concluded that a neural mechanism is responsible for the specificity of joint angle observed in isometric training.  相似文献   

4.
The purpose of this study was to determine whether neural and/or muscular factors contributed to the inferior strength-related motor performances of obese adolescents. Subjects were 10 non-obese (14.6% fat) and 11 obese (32.3% fat) males matched for age (15-18 years), level of maturity (Tanner stages IV and V), lean body mass, and height. Peak torque (PT) was measured during maximal voluntary isometric (IS) and isokinetic (IK) knee extension (KE). Peak twitch torque (TT), time to peak torque (TPT), and half-relaxation time (HRT) of the knee extensors were elicited by percutaneous electrical stimulation. The interpolated twitch technique was used to determine the extent of motor unit activation (% MUA) during maximal voluntary IS KE. Knee extensor cross-sectional area (CSA) was determined by computed axial tomography taken at the mid-thigh. All strength and area measurements were made on the right side of the body. Obese subjects had significantly (P less than 0.05) lower maximal voluntary IS and IK KE strength normalized for body weight, and significantly lower % MUA during IS KE. There were no significant differences (P greater than 0.05) between groups for absolute or normalized (for the product of muscle CSA and height) ISPT, IKPT, and TT, knee extensor CSA, or TPT and HRT. These results suggest that reduced MUA and a lower strength per mass ratio (due to excess fat) are probably important contributing factors to the poorer motor performances of the obese, especially for complex motor tasks involving large muscle groups and the support or moving of body weight.  相似文献   

5.
Standardized measurements of dynamic strength of the kneee extensor muscles were performed in 25 healthy male subjects (17-37 yr) by means of isokinetic contractions, i.e., knee extensions with constant angular velocities. Overall variation between double determinations of maximal torque throughout the 90 degrees arc of motion (0 degrees = fully extended leg) averaged 10% for the different constant velocities chosen. At any given angle of the knee the torque produced was higher for isometric than for dynamic contractions. Dynamic torque decreased gradually with increased speed of shortening. Peak dynamic torque was reached at knee angles in the range: 55-66 degrees, with a displacement toward smaller knee angles with higher angular velocities. Correlations were demonstrated between peak torque produced at the highest speed of muscle shortening and percent as well as relative area of fast twitch fibers in the contracting muscle. In addition muscles with a high percentage of fast twitch fibers had the highest maximal contraction speeds. These observations on intact human skeletal muscle are consistent with earlier findings in animal skeletal muscle preparations.  相似文献   

6.
Strength training counteracts motor performance losses during bed rest.   总被引:4,自引:0,他引:4  
The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups (P < 0.05), with a greater amount (P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr (P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.  相似文献   

7.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

8.
Monozygous twin pairs (two female and four male) were used in a strength training study so that one member of each pair served as training subject (TS) and the other members as nonexercising controls (CS). TS trained four times a week for 12 weeks with maximal isometric knee extensions of the right leg. The parameters studied included muscle strength, endurance time, electromyographic activity, and activities of several key enzymes in nonoxidative an oxidative muscle metabolism. The results disclosed that in addition to a 20% increase in isometric knee extension strength in the trained leg of TS, an average increase of 11% was observed in strength of TS untrained leg. CS did not demonstrate any change in muscle strength. Training also included an improvement in the maintenance of a static load of 60% of the pretraining maximum. Increase in the maximum integrated electromyographic activity (IEMG) of the rectus femoris muscle occurred concomitantly with the knee extension strength. Traning also caused reduction in the IEMG/tension ratio at submaximal loads indicating a more econimical usage of the rectus femoris muscles. Muscle biopsies taken from the vastus lateralis muscle showed that the enzyme activities of MDH, SDH, and HK were higher, and LDH and CPK lower in the trained leg as compared to the nontrained control leg of TS or to the values of the untrained member of the twin pair. It is concluded that isometric strength training as used in the present study can cause increased recruitment of the availabel motor unit pool, improved efficiency at submaximal loads, and surprisingly also enchancement of the oxidative metabolism in the muscle.  相似文献   

9.
The present study aimed to investigate the effect of isometric training on the elasticity of human tendon structures. Eight subjects completed 12 wk (4 days/wk) of isometric training that consisted of unilateral knee extension at 70% of maximal voluntary contraction (MVC) for 20 s per set (4 sets/day). Before and after training, the elongation of the tendon structures in the vastus lateralis muscle was directly measured using ultrasonography while the subjects performed ramp isometric knee extension up to MVC. The relationship between the estimated muscle force and tendon elongation (L) was fitted to a linear regression, the slope of which was defined as stiffness of the tendon structures. The training increased significantly the volume (7.6+/-4.3%) and MVC torque (33.9+/-14.4%) of quadriceps femoris muscle. The L values at force production levels beyond 550 N were significantly shorter after training. The stiffness increased significantly from 67.5+/-21.3 to 106.2+/-33.4 N/mm. Furthermore, the training significantly increased the rate of torque development (35.8 +/- 20.4%) and decreased electromechanical delay (-18.4+/-3.8%). Thus the present results indicate that isometric training increases the stiffness and Young's modulus of human tendon structures as well as muscle strength and size. This change in the tendon structures would be assumed to be an advantage for increasing the rate of torque development and shortening the electromechanical delay.  相似文献   

10.
It was hypothesized that both vibration frequency and muscle length modulate the strengthening of muscles that is assumed to result from whole-body vibration (WBV). Length of knee extensor muscles during vibration is affected by the knee joint angle; the lengths of the knee extensors increase with more flexed knee joint angles. In an intervention study 28 volunteers were randomly assigned to 1 of 4 groups. Each group received 4 weeks of WBV at 1 of 3 different frequencies (20, 27, or 34 Hz) or 1 of 2 different lengths of knee extensors. Voluntary, isometric knee extension moment-angle relationship was determined. Initially, stronger subjects reacted differently to WBV than weaker participants. In stronger subjects knee extension moment did not improve; in the weaker subjects considerable improvements were observed ranging from 10 to 50%. Neither vibration frequency nor muscle length during the intervention affected the improvements. In addition to strength, the knee joint angle at which the maximal joint moment was generated (optimal joint angle) was affected. When trained at short muscle lengths, optimal angle shifted to more extend joint position. WBV training at long muscle lengths tended to induce an opposite shift. The amount of this shift tended to be influenced by vibration frequency; the lower the vibration frequency the larger the shift. Shifts of optimal lengths occurred in both weaker and stronger subjects. This study shows that muscle length during training affects the angle of knee joint at which the maximal extension moment was generated. Moreover, in weaker subjects WBV resulted in higher maximal knee joint extension moments. Vibration frequency and muscle length during vibration did not affect this joint moment gain.  相似文献   

11.
The aim of the study was to examine alterations in contractile and neural processes in response to an isometric fatiguing contraction performed with EMG feedback (constant-EMG task) when exerting 40% of maximal voluntary contraction (MVC) torque with the knee extensor muscles. A task with a torque feedback (constant-torque task) set at a similar intensity served as a reference task. Thirteen men (26+/-5 yr) attended two experimental sessions that were randomized across days. Endurance time was greater for the constant-EMG task compared with the constant-torque task (230+/-156 s vs. 101+/-32s, P<0.01). Average EMG activity for the knee extensor muscles increased from 33.5+/-4.5% to 54.7+/-21.7% MVC EMG during the constant-torque task (P<0.001), whereas the torque exerted during the constant-EMG task decreased from 42.8+/-3.0% to 17.9+/-5.6% MVC torque (P<0.001). Comparable reductions in knee extensors MVC (-15.7+/-8.7% for the constant-torque task vs. -17.5+/-9.8% for the constant-EMG task, P>0.05) and voluntary activation level were observed at exhaustion. In contrast, excitation-contraction coupling process, assessed with an electrically evoked twitch and doublet, was altered significantly more at the end of the constant-EMG task despite the absence of M-wave changes for both tasks. Present results suggest that prolonged contractions using EMG biofeedback should be used cautiously in rehabilitation programs.  相似文献   

12.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

13.
The aim of the present study was to assess the time course and the origin of adaptations in neuromuscular function as a consequence of prolonged bed rest with or without countermeasure. Twenty healthy males volunteered to participate in the present study and were randomly assigned to either an inactive control group (Ctrl) or to a resistive vibration exercise (RVE) group. Prior to, and seven times during bed rest, we recorded high-density surface electromyogram (sEMG) signals from the vastus lateralis muscle during isometric knee extension exercise at a range of contraction intensities (5–100% of maximal voluntary isometric torque). The high-density sEMG signals were analyzed for amplitude (root mean square, RMS), frequency content (median frequency, Fmed) and muscle fiber conduction velocity (MFCV) in an attempt to describe bed rest-induced changes in neural activation properties at the levels of the motor control and muscle fibers. Without countermeasures, bed rest resulted in a significant progressive decline in maximal isometric knee extension strength, whereas RMS remained unaltered throughout the bed rest period. In line with observed muscle atrophy, both Fmed and MFCV declined during bed rest. RVE training during bed rest resulted in maintained maximal isometric knee extension strength, and a strong increase (~30%) in maximal EMG amplitude, from 10 days of bed rest on. Exclusion of other factors led to the conclusion that the RVE training increased motor unit firing rates as a consequence of an increased excitability of motor neurons. An increased firing rate might have been essential under training sessions, but it did not affect isometric voluntary torque capacity.  相似文献   

14.
Previous studies show that cessation of resistance training, commonly known as "detraining," is associated with strength loss, decreased neural drive, and muscular atrophy. Detraining may also increase the expression of fast muscle myosin heavy chain (MHC) isoforms. The present study examined the effect of detraining subsequent to resistance training on contractile performance during slow-to-medium velocity isokinetic muscle contraction vs. performance of maximal velocity "unloaded" limb movement (i.e., no external loading of the limb). Maximal knee extensor strength was measured in an isokinetic dynamometer at 30 and 240 degrees/s, and performance of maximal velocity limb movement was measured with a goniometer during maximal unloaded knee extension. Muscle cross-sectional area was determined with MRI. Electromyographic signals were measured in the quadriceps and hamstring muscles. Twitch contractions were evoked in the passive vastus lateralis muscle. MHC isoform composition was determined with SDS-PAGE. Isokinetic muscle strength increased 18% (P < 0.01) and 10% (P < 0.05) at slow and medium velocities, respectively, along with gains in muscle cross-sectional area and increased electromyogram in response to 3 mo of resistance training. After 3 mo of detraining these gains were lost, whereas in contrast maximal unloaded knee extension velocity and power increased 14% (P < 0.05) and 44% (P < 0.05), respectively. Additionally, faster muscle twitch contractile properties along with an increased and decreased amount of MHC type II and MHC type I isoforms, respectively, were observed. In conclusion, detraining subsequent to resistance training increases maximal unloaded movement speed and power in previously untrained subjects. A phenotypic shift toward faster muscle MHC isoforms (I --> IIA --> IIX) and faster electrically evoked muscle contractile properties in response to detraining may explain the present results.  相似文献   

15.
The purpose of this study was to determine whether 7 weeks of standardized (same number and duration of repetitions, sets and rest strictly identical) electromyostimulation training of the elbow flexor muscles would induce strength gains equivalent to those of voluntary isometric training in isometric, eccentric and concentric contractions. Twenty-five males were randomly assigned to an electromyostimulated group (EMS, n = 9), a voluntary isometric group (VOL, n = 8), or a control group (CON, n = 8). Maximal voluntary isometric, eccentric and concentric strength, electromyographic (EMG) activity of the biceps and triceps brachii muscles, elbow flexor muscle activation (twitch interpolation technique) and contractile properties were assessed before and after the training period. The main findings were that the isometric torque gains of EMS were greater than those of VOL after the training period (P < 0.01) and that the eccentric and concentric torque gains were equivalent. In both groups, we observed that the mechanical twitch (Pt) was increased (P < 0.05) and that torque improvements were not mediated by neural adaptations. Considering the respective intensities of the training programs (i.e., submaximal contractions for EMS versus maximal for VOL), it can be concluded that electromyostimulation training would be more efficient than voluntary isometric training to improve both isometric and dynamic strength.  相似文献   

16.
Hemiparesis-disability and muscle weakness of 1 side of the body-is a common consequence of stroke. High-intensity strength training may be beneficial to regain function, but strength coaches in the field of rehabilitation need evidence-based guidelines. The purpose of this study was to evaluate the effect of intensive physical rehabilitation on neuromuscular and functional adaptations in outpatients suffering from hemiparesis after stroke. A within-subject repeated-measures design with the paretic leg as the experimental leg and the nonparetic leg as the control leg was used. Eleven outpatients with hemiparesis after stroke participated in 12 weeks of intensive physical rehabilitation comprising unilateral high-intensity strength training with near-maximal loads (4-12 repetition maximum) and body weight supported treadmill training. At baseline and 12-week follow-up, the patients went through testing consisting of isokinetic muscle strength, neuromuscular activation measured with electromyography (EMG), electrically evoked muscle twitch contractile properties, and gait performance (10-m Walk Test and 6-min Walk Test). After the 12-week conditioning program, knee extensor and flexor strength increased during all contraction modes and velocities in the paretic leg. Significant increases were observed for agonist EMG amplitude at slow concentric and slow eccentric contraction. Twitch torque increased, whereas twitch time-to-peak tension remained unchanged. By contrast, no significant changes were observed in the nonparetic control leg. Gait performance increased 52-68%. In conclusion, intensive physical rehabilitation after stroke leads to clinically relevant neuromuscular improvements, leading to increased voluntary strength during a wide range of contraction modes and velocities, and improved gait velocity. Strength training coaches working in the field of rehabilitation can use this knowledge to safely and efficiently add high-intensity strength training to existing rehabilitation paradigms.  相似文献   

17.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).  相似文献   

18.
This study evaluated and compared the effectiveness of an aerobics-calisthenics (A-CAL) and an aerobics/weight training (A-WT) programs on lower limb strength and body fat (%). Thirty-five adult women (age 42.1 +/- 5.2 years) were randomly assigned to A-CAL (n = 14), A-WT (n = 14), or a control group (n = 7). The A-CAL and A-WT trained 3 days per week for 10 weeks. Maximal bilateral isometric and isokinetic knee extension (KEXT) and flexion (KFLEX) torque, squat jump (SJ), and body fat (%) were measured before and immediately after training. The results revealed nonsignificant differences between A-CAL and A-WT (p > 0.05). Both A-CAL and A-WT improved SJ (p < 0.001). A-WT increased isometric torque of KEXT and KFLEX (p < 0.05), isokinetic torque of KFLEX (p < 0.05), and decreased body fat (%) (p < 0.05) when compared with controls. In summary, the application of a 10-week light-weight training program improved selected strength parameters of healthy women, compared with controls, but the effectiveness of the calisthenics exercises as an independent form of strength training is dubious.  相似文献   

19.
The purpose of this study was to investigate whether the isometric muscle force, redeveloped following maximal-effort voluntary shortening contractions in human skeletal muscle, is smaller than the purely isometric muscle force at the corresponding length. Isometric knee extensor moments, surface electromyographic (EMG) signals of quadriceps femoris, and interpolated twitch moments (ITMs) were measured while 10 subjects performed purely isometric knee extensor contractions at a 60 degrees knee angle and isometric knee extensor contractions at a 60 degrees knee angle preceded by maximal-effort voluntary shortening of the quadriceps muscles. It was found that the knee extensor moments were significantly decreased for the isometric-shortening-isometric contractions compared with the isometric contractions for the group as a whole, whereas the corresponding EMG and ITM values were the same. This study is the first to demonstrate force depression following muscle shortening for voluntary contractions. We concluded that force depression following muscle shortening is an actual property of skeletal muscle rather than a stimulation artifact and that force depression during voluntary contraction is not accompanied by systematic changes in muscle activation as evaluated by EMG and ITM.  相似文献   

20.
Isometric muscle strength of the hand-grip and of trunk flexion and extension, and isokinetic torque of elbow and knee flexion and knee extension were assessed in a random sample of 8 and 13 year old Swedish children. The results were compared with respect to sex and age in absolute terms and relative to weight, height2 and estimates of lean body mass and cross-sectional muscle area. Daily physical activity was also estimated. The muscle strength variables were in general found to be very similar in the 8 year old boys and girls. In the 13 year old group the boys were generally stronger than the girls, in both absolute and relative terms, except for similar torque values during knee extension. The absolute and relative muscle strength and torque values were higher in the older than in the younger children, with the exception of trunk strength per unit of body weight and of lean body mass, which were similar in boys of both ages and significantly lower in the older than in the younger girls. No significant correlation was found between the estimates of physical activity and isometric and isokinetic muscle strength and torque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号