首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Debus  K Weber  M Osborn 《The EMBO journal》1982,1(12):1641-1647
Four monoclonal antibodies designated CK1 - CK4 were obtained from fusions of mouse myeloma F0 cells with spleen cells from BALB/c mice immunized with cytoskeletal preparations made by treatment of human HeLa cells with non-ionic detergents. These IgG1 type antibodies all recognize, in immune blots, cytokeratin 18 (45 kd, pI 5.7) in the catalogue of 19 human cytokeratin species developed by Moll et al. (1982). Immunofluorescence microscopy on human material shows that CK1 - CK4 stain a wide variety of simple epithelia (e.g., intestine, respiratory and urinary systems, liver, glandular epithelia) but do not stain stratified squamous epithelia (e.g., oesophagus, epidermis) or non-epithelial cells. The immunofluorescence results, developed mainly by gel electrophoresis, support the concept of cytokeratin divergence in different epithelia and clarify, for cytokeratin 18, some unsolved problems posed by high tissue complexity. CK2 appears specific for human, CK1 and CK3 for primates, while CK4 shows broad cross-species reactivity. Thus, CK1 - CK4 appear to be valuable tools for cytokeratin typing and initial experiments also suggest that they can be used to further subdivide human tumours of epithelial origin.  相似文献   

2.
Summary The immunocytochemical localization of cytokeratin and vimentin in rat eye tissues was investigated using a panel of 39 monoclonal antibodies specific for single or multiple of cytokeratin polypeptides and one polyclonal anti CK20 antiserum. The retinal and the ciliary body pigment epithelia only expressed cytokeratins 8 and 18, whereas the fetal retinal pigment epithelium and focally the adult epithelium, in the transition zone of retina and ciliary body, exhibited a reactivity for cytokeratin 19. In contrast, the non-pigmented ciliary epithelium was positive for vimentin only.In the rat conjunctiva distributed goblet cell clusters were selectively stained with cytokeratin 7, 8, 18 and 19 specific monoclonal antibodies. Among them a group of cytokeratin 8 and 18 specific monoclonal antibodies which stained the goblet cells as well as cytokeratin 8 and 18 positive internal controls did not react with either the cytokeratin 8 and 18 positive neuroectodermal cells of the rat eye nor the rat choroid plexus epithelium. This indicates differences in the phenotype e.g. conformational epitope changes, of neuroectodermal derived and other cytokeratins. The corneal and conjunctival epithelium showed a more complex distribution of squamous epithelium type cytokeratins. The limbal region as a transient zone connecting both epithelia exhibited a changing cytokeratin pattern. In general, the study emphasized the necessity to work with an enlarged antibody panel to avoid misleading results in the immunolocalization of cytokeratins.Dedicated to Prof. Dr. H.J. Scharf (Halle, FRG) on the occasion of his 70th birthday  相似文献   

3.
A number of human cytokeratins are expressed during the development of stratified epithelia from one-layered polar epithelia and continue to be expressed in several adult epithelial tissues. For studies of the regulation of the synthesis of stratification-related cytokeratins in internal tissues, we have prepared cDNA and genomic clones encoding cytokeratin 4, as a representative of the basic (type II) cytokeratin subfamily and cytokeratin 15, as representative of the acidic (type I) subfamily, and determined their nucleotide sequences. The specific expression of mRNAs encoding these two polypeptides in certain stratified tissues and cultured cell lines is demonstrated by Northern blot hybridization. Hybridization in situ with antisense riboprobes and/or synthetic oligonucleotides shows the presence of cytokeratin 15 mRNA in all layers of esophagus, whereas cytokeratin 4 mRNA tends to be suprabasally enriched, although to degrees varying in different regions. We conclude that the expression of the genes encoding these stratification-related cytokeratins starts already in the basal cell layer and does not depend on vertical differentiation and detachment from the basal lamina. Our results also show that simple epithelial and stratification-related cytokeratins can be coexpressed in basal cell layers of certain stratified epithelia such as esophagus. Implications of these findings for epithelial differentiation and the formation of squamous cell carcinomas are discussed.  相似文献   

4.
Epithelial cells contain a class of intermediate-sized filaments formed by proteins related to epidermal alpha-keratins ('cytokeratins'). Different epithelia can express different combinations of cytokeratin polypeptides widely varying in apparent mol. wt. (40 000-68 000) and isoelectric pH (5.0-8.5). We have separated, by two-dimensional gel electrophoresis, cytokeratin polypeptides from various tissues and cultured cells of man, cow, and rodents and examined their relatedness by tryptic peptide mapping. By this method, a subfamily of closely related cytokeratin polypeptides has been identified which comprises the relatively large (greater than or equal to mol. wt. 52 500 in human cells) and basic (pH greater than or equal to 6.0) polypeptides but not the smaller and acidic cytokeratins. In all species examined, the smallest polypeptide of this subfamily is cytokeratin A, which is widespread in many simple epithelia and is the first cytokeratin expressed during embryogenesis. This cytokeratin polypeptide subfamily is represented by at least one member in all epithelial and carcinoma cells examined, indicating that polypeptides of this subfamily serve an important role as tonofilament constitutents . Diverse stratified epithelia and tumours derived therefrom contain two or more polypeptides of this subfamily, and the patterns of expression in different cell types suggest that some polypeptides of this subfamily are specific for certain routes of epithelial differentiation.  相似文献   

5.
A monoclonal antibody derived from a mouse immunized with bovine epidermal prekeratin has been characterized by its binding to cytoskeletal polypeptides separated by one- or two-dimensional gel electrophoresis and by immunofluorescence microscopy. This antibody (KG 8.13) binds to a determinant present in a large number of human cytokeratin polypeptides, notably some polypeptides (Nos. 1, 5, 6, 7, and 8) of the 'basic cytokeratin subfamily' defined by peptide mapping, as well as a few acidic cytokeratins such as the epidermis-specific cytokeratins Nos. 10 and 11 and the more widespread cytokeratin No. 18. This antibody reacts specifically with a wide variety of epithelial tissues and cultured epithelial cells, in agreement with previous findings that at least one polypeptide of the basic cytokeratin subfamily is present in all normal and neoplastic epithelial cells so far examined. The antibody also reacts with corresponding cytokeratin polypeptides in a broad range of species including man, cow, chick, and amphibia but shows only limited reactivity with only a few rodent cytokeratins. The value of this broad-range monoclonal antibody, which apparently recognizes a stable cytokeratin determinant ubiquitous in human epithelia, for the immunohistochemical identification of epithelia and carcinomas is discussed.  相似文献   

6.
Cytokeratin expression was studied in the epithelia lining the normal human urine conducting system using immunohistochemistry on frozen sections employing a panel of 14 monoclonal antibodies. Eleven of these anticytokeratin antibodies reacted specifically with one of the 19 human cytokeratin polypeptides. Profound differences were found in the cytokeratin expression patterns between the different types of epithelium in the male and female urinary tract. In the areas showing morphological transitions of transitional epithelium to columnar epithelium and of nonkeratinizing squamous epithelium to keratinizing squamous epithelium gradual shifts of cytokeratin expression patterns were observed, often anticipating the morphological changes. However, also within one type of epithelium, i.e. the transitional epithelium, two different patterns of cytokeratin expression were found. Expression of cytokeratin 7 was homogeneous in the transitional epithelium of renal pelvis and ureter but heterogeneous in the transitional epithelium of the bladder. Furthermore, intraepithelial differences in cytokeratin expression could be shown to be differentiation related. Using a panel of chain-specific monoclonal antibodies to cytokeratins 8 and 18 conformational and/or biochemical changes in the organization of these intermediate filaments were demonstrated upon differentiation in columnar and transitional epithelium.  相似文献   

7.
The various epithelial cells of the lower respiratory tract and the carcinomas derived from them differ markedly in their differentiation characteristics. Using immunofluorescence microscopy and two-dimensional gel electrophoresis of cytoskeletal proteins from microdissected tissues we have considered whether cytokeratin polypeptides can serve as markers of cell differentiation in epithelia from various parts of the human and bovine lower respiratory tract. In addition , we have compared these protein patterns with those found in the two commonest types of human lung carcinoma and in several cultured lung carcinoma cell lines. By immunofluorescence microscopy, broad spectrum antibodies to cytokeratins stain all epithelial cells of the respiratory tract, including basal, ciliated, goblet, and alveolar cells as well as all tumor cells of adenocarcinomas and squamous cell carcinomas. However, in contrast, selective cytokeratin antibodies reveal cell type-related differences. Basal cells of the bronchial epithelium react with antibodies raised against a specific epidermal keratin polypeptide but not with antibodies derived from cytokeratins characteristic of simple epithelia. When examined by two-dimensional gel electrophoresis, the alveolar cells of human lung show cytokeratin polypeptides typical of simple epithelia (nos. 7, 8, 18 and 19) whereas the bronchial epithelium expresses, in addition, basic cytokeratins (no. 5, small amounts of no. 6) as well as the acidic polypeptides nos. 15 and 17. Bovine alveolar cells also differ from cells of the tracheal epithelium by the absence of a basic cytokeratin polypeptide. All adenocarcinomas of the lung reveal a "simple-epithelium-type" cytokeratin pattern (nos. 7, 8, 18 and 19). In contrast, squamous cell carcinomas of the lung contain an unusual complexity of cytokeratins. We have consistently found polypeptides nos. 5, 6, 8, 13, 17, 18 and 19 and, in some cases, variable amounts of cytokeratins nos. 4, 14 and 15. Several established cell lines derived from human lung carcinomas (SK-LU-1, Calu -1, SK-MES-1 and A-549) show a uniform pattern of cytokeratin polypeptides (nos. 7, 8, 18 and 19), similar to that found in adenocarcinomas. In addition, vimentin filaments are produced in all the cell lines examined, except for SK-LU-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The present study was directed towards the characterization of cell-specific histogenetic markers for the various epithelial elements of the adult and the developing guinea pig submandibular salivary gland. We have employed immunofluorescent labelling using three cytokeratin monoclonal antibodies, for which the polypeptide specificities towards guinea pig cytokeratins were determined. All the epithelial elements of the adult gland were positively labelled with two monoclonal antibodies, namely KG 8.13 ('broad spectrum' anti-cytokeratin) and antibody Ks B.18 (reactive with a simple cytokeratin-specific polypeptide of 49 X 10(3) Mr). Antibody KS 8.58 (reactive with a guinea pig cytokeratin polypeptide of 50 X 10(3) Mr) labelled the basal cells of the large ducts, as well as the myoepithelium. During development of the gland, the submandibular anlage and its primary and secondary branches with their terminal buds, were uniformly labelled with the three antibodies; however, the cytokeratin polypeptides reactive with antibody KS 8.58, which were apparently expressed in all cells of the developing ducts, gradually disappear from most of the ductal cells, starting at about 6 weeks of gestation, and remain only in the basal or reserve cells of the large ducts and the myoepithelium. These observations support the notion that the basal cells retain at least some of the properties of the embryonic glandular epithelium and could be considered as pluripotent reserve cells which may function as progenitors for other epithelial elements in the salivary glands epithelia.  相似文献   

9.
Summary The expression patterns of individual cytokeratin polypeptides in foetal and adult human pancreatic tissues were examined using monoclonal antibodies. We demonstrated that human pancreatic epithelia in early stages of development (14 weeks of gestation) contain cytokeratins 7, 8, 18 and 19, which are typical of simple epithelia, as well as cytokeratin 4 and 17, which are characteristic of stratified epithelia. In the pancreatic ducts, most of these cytokeratins appeared to be expressed together. Cytokeratins 1, 5, 10, 13, 16 and 20 were not detectable. In contrast, the pancreatic parenchyma was only positive for cytokeratins 8 and 18, except a transient expression of cytokeratins 7 and 19 in pancreatic islets and acinar cells during the foetal development. A focal cytokeratin 7 staining of single acinar cells was seen in newborn and in adult islets. In the stromal tissue, vascular smooth muscle cells were partly reactive with cytokeratin 8 and 18 specific antibodies. The results are discussed in the light of differentiation-dependent changes in the expression of individual cytokeratin polypeptides in developing epithelia.  相似文献   

10.
The expression patterns of individual cytokeratin polypeptides in foetal and adult human pancreatic tissues were examined using monoclonal antibodies. We demonstrated that human pancreatic epithelia in early stages of development (14 weeks of gestation) contain cytokeratins 7, 8, 18 and 19, which are typical of simple epithelia, as well as cytokeratin 4 and 17, which are characteristic of stratified epithelia. In the pancreatic ducts, most of these cytokeratins appeared to be expressed together. Cytokeratins 1, 5, 10, 13, 16 and 20 were not detectable. In contrast, the pancreatic parenchyma was only positive for cytokeratins 8 and 18, except a transient expression of cytokeratins 7 and 19 in pancreatic islets and acinar cells during the foetal development. A focal cytokeratin 7 staining of single acinar cells was seen in newborn and in adult islets. In the stromal tissue, vascular smooth muscle cells were partly reactive with cytokeratin 8 and 18 specific antibodies. The results are discussed in the light of differentiation-dependent changes in the expression of individual cytokeratin polypeptides in developing epithelia.  相似文献   

11.
Immunohistological analysis of human tissue using monoclonal antibodies against cytokeratins, which are confined to cells of epithelial origin, is a valuable technique. Using human epidermal keratins as antigen, we prepared monoclonal antibodies against cytokeratins (ZK1, ZK7, ZK61 and ZK99) and against a desmosomal protein (ZK31). Immunohistochemical staining of human skin sections using these antibodies showed a specific reaction with the epidermis: ZK1 stained the entire epidermis, ZK7 only the basal layer, ZK61 and ZK99 the suprabasal layers, and ZK31 the cellular interfaces. In order to test for antibody specificity, immunoblots with human epidermal and amnion epithelial cytokeratin polypeptides, as well as immunofluorescence microscopy of simple epithelia (glandular and simple columnar epithelia) were performed. ZK1, ZK61 and ZK99 reacted preferentially with cytokeratin polypeptides of stratified squamous epithelia and ZK7 recognized cytokeratins of stratified and simple epithelia. When the ZK antibodies were tested on mesothelial cells in pleural effusions, only ZK7 reacted with these cells. Biochemical analysis of cytokeratin accumulation in cells of primary and long-term cultures indicated that the cytokeratin pattern of mesothelial cells was quite unstable, while that of amnion epithelial cells showed only minor quantitative changes. The use of these antibodies to determine the epithelial origin of cells present in pleural effusions is proposed.  相似文献   

12.
Intermediate filament proteins of normal epithelia of the human and the bovine male urogenital tract and of certain human renal and bladder carcinomas have been studied by immunofluorescence microscopy and by two-dimensional gel electrophoresis of cytoskeletal fractions from microdissected tissue samples. The patterns of expression of cytokeratin polypeptides differ in the various epithelia. Filaments of a cytokeratin nature have been identified in all true epithelial cells of the male urogenital tract, including renal tubules and rete testis. Simple epithelia of renal tubules and collecting ducts of kidney, as well as rete testis, express only cytokeratin polypeptides nos. 7, 8, 18, and 19. In contrast, the transitional epithelia of renal pelvis, ureter, bladder, and proximal urethra contain, in addition to those polypeptides, cytokeratin no. 13 and small amounts of nos. 4 and 5. Most epithelia lining the human male reproductive tract, including those in the epididymis, ductus deferens, prostate gland, and seminal vesicle, synthesize cytokeratin no. 5 in addition to cytokeratins nos. 7, 8, 18, and 19 (cytokeratin no. 7 had not been detected in the prostate gland). Cytokeratin no. 17 has also been identified, but in very low amounts, in seminal vesicle and epididymis. The cytokeratin patterns of the urethra correspond to the gradual transition of the pseudostratified epithelium of the pars spongiosa (cytokeratins nos. 4, 5, 6, 13, 14, 15, and 19) to the stratified squamous epithelium of the fossa navicularis (cytokeratins nos. 5, 6, 10/11, 13, 15, and 19, and minor amounts of nos. 1 and 14). The noncornified stratified squamous epithelium of the glans penis synthesizes cytokeratin nos. 1, 5, 6, 10/11, 13, 14, 15, and 19. In immunofluorescence microscopy, selective cytokeratin antibodies reveal differential staining of different groups or layers of cells in several epithelia that may relate to the specific expression of cytokeratin polypeptides. Human renal cell carcinomas show a simple cytokeratin pattern consisting of cytokeratins nos. 8, 18, and 19, whereas transitional cell carcinomas of the bladder reveal additional cytokeratins such as nos. 5, 7, 13, and 17 in various proportions. The results shows that the wide spectrum of histological differentiation of the diverse epithelia present in the male urogenital tract is accompanied by pronounced changes in the expression of cytokeratin polypeptides and suggest that tumors from different regions of the urogenital tract may be distinguished by their cytokeratin complements.  相似文献   

13.
A novel type of monoclonal murine antibody (Ks18.18) directed against an epitope depending on human cytokeratin (CK) 18, a member of the acidic (type I) CK subfamily, is described. We show by SDS-PAGE immunoblots and dot-blot assays that this antibody is unreactive with both the denatured and the renatured individual polypeptides but binds strongly to heterotypic coiled-coil complexes of CK 18 with several members of the complementary basic (type II) CK subfamily, notably with CK 8; i.e., its most frequent natural partner. We also show that specific interactions between complementary CK polypeptides take place during the incubation steps of immunoblotting procedures as polypeptides, or fragments thereof, that detach from the substrate can bind to complementary polypeptides attached to the substratum, which may result in false assignments of antibody reactivities. The conformation-specific, CK 18-dependent epitope of Ks18.18 was detected in intermediate filaments (IFs) of cultured cells, simple epithelia, and many carcinomas and, surprisingly, also in the basal cells of some stratified epithelia. Ks18.18 also reacts with altered CK configurations as present in the spheroidal bodies of mitotic cells and in the Mallory bodies of hepatocytes intoxicated with certain drugs, thus indicating that the heterotypic CK complexes are maintained in these structures. We have also used antibody Ks18.18 to demonstrate the existence of heterotypic CK 8 and 18 complexes in a distinct soluble form among supernatant proteins from cell homogenates which is indistinguishable from the heterotypic tetramer obtained after experimental disintegration of IFs. The potential value of such IF conformation-specific antibodies in cell biological research and pathology is discussed.  相似文献   

14.
Summary The expression of cytokeratin polypeptides in the different epithelia of the developing inner ear of the rat from 12 days post conception to 20 days after birth was analysed immunohistochemically, using a panel of monoclonal antibodies. Throughout the development of the complex epithelial lining of the inner ear originating from the otocyst epithelium, only cytokeratins which are typical of simple epithelia were expressed. Cytokeratins 8, 18, and 19 were detectable shortly after the formation of the otocyst from the ectoderm (12 dpc), whereas cytokeratin 7 expression was delayed and first appeared in the vestibular portion and subsequently in the developing cochlear duct. During the development of the different types of specialized cells, differentiation-dependent modulation of the cytokeratin expression patterns was observed. In the mature inner ear, the specialized cell types displayed a function-related cytokeratin expression profile, both in the cochlear and vestibular portion. Cytokeratin expression in the flat epithelium of the vestibular portion suggests a more complex composition of this epithelium than has been established from routine morphology. Remarkably, the cochlear sensory cells were apparently devoid of cytokeratins, but no final conclusion could be drawn on the presence of cytokeratins in the sensory cells of the vestibular portion, because of the difficulty to delineate the cell borders between sensory cells and supporting cells.  相似文献   

15.
The expression of cytokeratin polypeptides in the different epithelia of the developing inner ear of the rat from 12 days post conception to 20 days after birth was analysed immunohistochemically, using a panel of monoclonal antibodies. Throughout the development of the complex epithelial lining of the inner ear originating from the otocyst epithelium, only cytokeratins which are typical of simple epithelia were expressed. Cytokeratins 8, 18, and 19 were detectable shortly after the formation of the otocyst from the ectoderm (12 dpc), whereas cytokeratin 7 expression was delayed and first appeared in the vestibular portion and subsequently in the developing cochlear duct. During the development of the different types of specialized cells, differentiation-dependent modulation of the cytokeratin expression patterns was observed. In the mature inner ear, the specialized cell types displayed a function-related cytokeratin expression profile, both in the cochlear and vestibular portion. Cytokeratin expression in the flat epithelium of the vestibular portion suggests a more complex composition of this epithelium than has been established from routine morphology. Remarkably, the cochlear sensory cells were apparently devoid of cytokeratins, but no final conclusion could be drawn on the presence of cytokeratins in the sensory cells of the vestibular portion, because of the difficulty to delineate the cell borders between sensory cells and supporting cells.  相似文献   

16.
Cytokeratin expression in normal postnatal human thymus was studied immunohistochemically by using monoclonal antibodies against various cytokeratin polypeptides. An attempt was made to characterize cell populations giving rise to the cornified structures of Hassal's corpuscles. Monoclonal antibody KB-37, a marker of squamous epithelium basal cells, was applied to distinguish the earliest cells capable of undergoing squamous differentiation. Parts of the subcapsular epithelium were extensively stained with this reagent. This epithelium, like the basal layer of certain squamous epithelia, exibited a high incidence of cytokeratins 13 and 14, and pronounced expression of cytokeratin 19. Simple epithelium cytokeratins 8, 18, and 19 were present in the cortex. Scattered cells reacted with KB-37 antibody. All stellate epithelial cells in the medulla were positive for cytokeratin 19. Most of the medullar epithelial cells were positive for cytokeratins 13, 14 and 17 of complex epithelium, in contrast to the cortex, where only a few cells were positive for these cytokeratins. A significant proportion of the medullar cells was positive for KB-37 antigen. Cytokeratins 8 and 18 were expressed in single cells and in groups of cells surrounding Hassal's corpuscles. The outermost cells of these corpuscles were positive for cytokeratin 19 and KB-37. In the peripheral parts of Hassal's corpuscles, simple epithelium cytokeratins 7, 8, 18, and cytokeratins 4, 13, 14, and 17, characteristic of stratified nonkeratinizing epithelia, were coexpressed with keratinization-specific cytokeratins 10/11. The inner parts of the swirls were uniformly positive for cytokeratins was reduced.  相似文献   

17.
Multi-layered ("stratified") epithelia differ from one-layered ("simple") polar epithelia by various architectural and functional properties as well as by their cytoskeletal complements, notably a set of cytokeratins characteristic of stratified tissue. The simple epithelial cytokeratins 8 and 18 have so far not been detected in any stratified epithelium. Using specific monoclonal antibodies we have noted, in several but not all samples of stratified epithelia, including esophagus, tongue, exocervix, and vagina, positive immunocytochemical reactions for cytokeratins 8, 18, and 19 which in some regions were selective for the basal cell layer(s) but extended into suprabasal layers in others. In situ hybridization with different probes (riboprobes, synthetic oligonucleotides) for mRNAs of cytokeratin 8 on esophageal epithelium has shown, in extended regions, relatively strong reactivity for cytokeratin 8 mRNA in the basal cell layer. In contrast, probes to cytokeratin 18 have shown much weaker hybridization which, however, was rather evenly spread over basal and suprabasal strata. These results, which emphasize the importance of in situ hybridization in studies of gene expression in complex tissues, show that the genes encoding simple epithelial cytokeratins can be expressed in stratified epithelia. This suggests that continual expression of genes coding for simple epithelial cytokeratins is compatible with the formation of squamous stratified tissues and can occur, at least in basal cell layers, simultaneously with the synthesis of certain stratification-related cytokeratins. We also emphasize differences of expression and immunoreactivity of these cytokeratins between different samples and in different regions of the same stratified epithelium and discuss the results in relation to changes of cytokeratin expression during fetal development of stratified epithelia, in response to environmental factors and during the formation of squamous cell carcinomas.  相似文献   

18.
Cytokeratin expression in simple epithelia   总被引:10,自引:0,他引:10  
To study the regulation of the expression of cytokeratins characteristic of simple epithelia, i.e., human cytokeratins nos. 7, 8, 18, and 19, we prepared several cDNA clones coding for these proteins and their bovine counterparts. In the present study, we describe a cDNA clone of the mRNA coding for human cytokeratin no. 18, which was isolated from an expression library using the monoclonal antibody, KG 8.13. This clone (756 nucleotides, excluding the polyA portion), encodes approximately one-half of the mRNA (approximately 1.4 kb), identifies one mRNA band in Northern-hybridization blots, and specifically selects one mRNA species coding for cytokeratin no. 18, as demonstrated by translation in vitro. Comparison of the deduced amino acid sequence--confirmed by direct amino-acid-sequence analyses of some polypeptide fragments produced by cleavage with cyanogen bromide--indicated that cytokeratin no. 18 is a member of the acidic (type I) subfamily of cytokeratins. It has only limited sequence homologies in common with other intermediate-sized filament proteins, and these are essentially restricted to certain domains of the alpha-helical rod portion. The carboxyterminal tail sequence does not contain glycine-rich elements, thus distinguishing this cytokeratin from those acidic (type I) cytokeratins that are characterized by this feature. The similarities and differences between cytokeratin no. 18 and previously described epidermal cytokeratins are discussed in relation to the differences in the stability of the complexes which this cytokeratin forms with basic (type II) cytokeratins, as well as in relation to possible functional differences of cytokeratins in simple and stratified epithelia.  相似文献   

19.
Using a panel of antibodies against different cytokeratins in immunofluorescence microscopy on frozen tissue sections and two-dimensional gel electrophoresis of cytoskeletal proteins from these tissues, we have studied the tissue distribution of cytokeratins in a fish, the rainbow trout Salmo gairdneri. We have distinguished at least 14 different cytokeratin polypeptides in only a limited number of tissues, thus demonstrating the great complexity of the cytokeratin pattern in a fish species. The simplest cytokeratin pattern was that present in hepatocytes, comprising one type-II (L1) and two type-I (L2, L3) polypeptides that appear to be related to mammalian cytokeratins 8 and 18, respectively. Two or all three cytokeratins of this group were also identified in several other epithelial tissues, such as kidney. Epithelia associated with the digestive tract contained, in addition, other major tissue-specific cytokeratins, such as components D1-D3 (stomach, intestine and swim bladder) and B1 and B2 (biliary tract). With the exception of D1, all these polypeptides were also found in a cultured cell line (RTG-2). Epidermal keratinocytes contained D1 and six other major cytokeratins, termed E1-E6. The most complex cytokeratin pattern was that found in the gill epithelium. Surprisingly, antibodies specific for cytokeratins of the L1-L3 group also reacted with certain cell-sheet-forming tissues that are not considered typical epithelia and in higher vertebrates express primarily, if not exclusively, vimentin. Such tissues were (a) endothelia, including the pillar cells of the "gill filaments", (b) scale-associated cells, and (c) the ocular lens epithelium, and also several nonepithelial cell types, such as (d) fibroblasts and other mesenchymal cells, (e) chondrocytes, (f) certain vascular smooth muscle cells, and (g) astroglial cells of the optic nerve. The differences between the patterns of cytokeratin expression in this fish species and those of higher vertebrates are discussed. It is concluded that the diversity of cytokeratins has already been established in lower vertebrates such as fish, but that the tissue-expression pattern of certain cytokeratins has been restricted during vertebrate evolution. We discuss the value of antibodies specific for individual cytokeratin polypeptides as marker molecules indicating cell and tissue differentiation in fish histology, embryology, and pathology.  相似文献   

20.
Three monoclonal antibody subclasses (IgG1, IgG2a, and IgM) were raised to the phosphoprotein B2 (Mr 68000, pI6.5-8.2) which has been shown previously to be associated with the nucleosomes of rat liver nuclei. These antibodies do not show any significant cross reactivity with CM-cellulose 'unbound' non-histone chromosomal proteins, bovine serum albumin or histones. Further verification of the specificity of these antibodies to this phosphoprotein was carried out using both 'dot' blot and immunological transfer analysis ('Western blot'). The monoclonal antibodies (IgG1 and IgG2a) could also be used to semi-quantify the phosphoprotein B2 in rat liver nuclei. The high specificity and unlimited availability of this type of probe provides a means to study the role(s) of this phosphoprotein in the overall scheme of actively transcribed chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号