首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acupuncture and moxibustion are traditional medical treatments that have come to play important roles in complementary and alternative medicines. Moxibustion also has a long history as a folk remedy in Japan, particularly due to the technical simplicity and selective efficacy on certain types of disease and distress. This study examined the effects of moxibustion focusing on the brain reward system, particularly in the nucleus accumbens. The effects of moxibustion stimulation at various sites and frequencies on monoamine levels of adult male Sprague-Dawley rats were examined using high-preformance liquid chromatography of dissected nucleus accumbens tissues. The rats weighing 290–310 g were divided into 3 groups according to the moxibustion point used: hindlimb, lumbar or parietal points. Each group was further divided into 3 subgroups, with stimulation for 10 consecutive days, for 1 day, or sham treatment (control). On each day of stimulation, 5 moxibustion cones with a peak temperature of 200°C were applied consecutively. Stimulation of any point on 1 day only did not change dopamine or serotonin levels, but lumbar stimulation significantly increased the metabolic turnover of dopamine. Conversely, stimulation for 10 consecutive days resulted in significantly decreased serotonin levels for hindlimb and parietal stimulations, and significantly increased 5-hydroxyindolacetic acid/serotonin ratio for hindlimb stimulation. These results suggest that the metabolic turnover of serotonin release may be accentuated by moxibustion in a reward-related brain area. Moxibustion over consecutive days, especially that to peripheral regions, appears most efficient to influence on monoamine levels in the nucleus accumbens. Special issue dedicated to Dr. Simo S. Oja  相似文献   

2.
Twenty male Sprague-Dawley rats were injected intraperitoneally with either 20 micrograms of dexamethasone or an equivalent volume of saline. The rats were then sacrificed at either one or four hours after the injections and their brains analyzed for monoamine and metabolite content using High Performance Liquid Chromatography with Electrochemical Detection. Significant effects were seen in dopaminergic and serotonergic systems, but these effects varied depending on the area of rat brain studied. Significant increases in dopamine (DA) levels were seen in the hypothalamus and nucleus accumbens of the dexamethasone treated rats when compared with saline treated rats. There was no significant effect of dexamethasone on DA levels in frontal or striatal brain areas. In the dexamethasone treated rats a significant increase in serotonin (5-HT) was observed in the hypothalamus; a significant decrease in 5-HT was observed in the frontal cortex. Biological and clinical implications of these findings are discussed.  相似文献   

3.
Dopaminergic innervation of the amygdala is highly responsive to stress   总被引:6,自引:0,他引:6  
The amygdala has been implicated in the neuronal sequelae of stress, although little is known about the neurochemical mechanisms underlying amygdala transmission. In vivo microdialysis was employed to measure extracellular levels of dopamine in the basolateral nucleus of the amygdala in awake rats. Once it was established that impulse-dependent release of dopamine could be measured reliably in the amygdala, the effect of stress, induced by mild handling, on amygdala dopamine release was compared with that in three other dopamine-innervated regions, the medial prefrontal cortex, nucleus accumbens, and caudate nucleus. The magnitude of increase in dopamine in response to the handling stimulus was significantly greater in the amygdala than in the nucleus accumbens and prefrontal cortex. This increase was maximal during the application of stress and diminished after the cessation of stress. In contrast, the increases in extracellular dopamine levels in other regions, in particular the nucleus accumbens, were prolonged, reaching maximal values after the cessation of stress. These results suggest that dopaminergic innervation of the amygdala may be more responsive to stress than that of other dopamine-innervated regions of the limbic system, including the prefrontal cortex, and implicate amygdalar dopamine in normal and pathophysiological processes subserving an organism's response to stress.  相似文献   

4.
The non-opiate beta-endorphin fragment des-Tyr1-gamma-endorphin (DT gamma E) had a decreasing effect on K+-induced release of tritiated dopamine from nucleus accumbens slices in vitro, when tissue was used of rats which prior to decapitation were in a state of low arousal. When nucleus accumbens tissue was used of rats which were mildly stressed by exposure to a novel environment prior to decapitation, this effect was absent, while an enhancing effect of DT gamma E became evident on basal dopamine efflux. This latter effect resembled that of haloperidol, which dose-dependently enhanced basal dopamine efflux in vitro. Exposure of rats to ether vapor shortly before decapitation abolished both these in vitro effects of DT gamma E. The results are interpreted as indicating that the quality of the modulating effects of DT gamma E on dopamine release from dopaminergic neurons projecting to the nucleus accumbens is depending on the state of activity of these neurons, which, in its turn, is a reflection of the state of arousal of the rats.  相似文献   

5.
Microiontophoretic study was performed to elucidate dopaminergic mechanism in the nucleus accumbens (Acc) of rats anesthetized with chloral hydrate. Iontophoretically applied dopamine produced an inhibition of glutamate-induced firing in 28 (62%) out of 45 Acc neurons tested. The dopamine-induced inhibition of 14 Acc neurons was clearly antagonized by simultaneous application of haloperidol, and a partial antagonism by sulpiride was observed in 3 out of 10 Acc neurons. These results indicate that dopamine produces an inhibition of the Acc neuron and that, compared to haloperidol, sulpiride is a less potent blocker of the postsynaptic dopamine receptor involved in the dopamine-induced inhibition.  相似文献   

6.
Central dopaminergic system serves two major physiological functions, i.e., motivation activation and motor coordination. The evidence that serotonergic system could modulate these two pathways suggests that serotonin (5-HT) and related agents may possess potential therapeutic values against certain mental or motor disorders caused by dopamine malfunction. This study presents novel modulatory role for serotonergic agents in rat behaviors which have been speculated to be associated with forebrain dopamine system. Three serotonergic agents, including DOI (5-HT2 agonist), ritanserin (5-HT2 antagonist) and amperozide (5-HT2/D2 antagonist) were evaluated, focused particularly on the atypical antipsychotic amperozide. It was found that both amperozide and ritanserin could inhibit amphetamine-induced hyperlocomotion, and only amperozide inhibited nomifensine-induced hyperlocomotion. Amperozide could also reduce significantly the rearing but not sniffing behaviors. Furthermore, DOI and amperozide, but not ritanserin, reduced the haloperidol-induced catalepsy. [corrected] When animals were unilaterally radiofrequency lesioned in either caudate putamen (CP) or nucleus accumbens (NA), amperozide reduced both the ipsi- and contralateral turns in CP-lesioned, but reduced only ipsilateral turns in NA-lesioned rats. Via in vivo microdialysis, we demonstrated that amperozide could increase the extracellular dopamine release in both CP and NA in either intact or para-chlorophenylalanine (p-CPA) serotonin-depleted rats. Overall, we conclude that the modulatory role of amperozide on forebrain dopamine system requires not only 5-HT2/D2 antagonistic but also the blockade of dopamine transporter.  相似文献   

7.
Ample evidence implicates corticotropin-releasing factor (CRF)-producing neurons of the central amygdaloid nucleus (CeA) in vegetative, endocrine, and behavioral responses to stress and anxiety in laboratory rats. Monoaminergic systems are involved in modulating these responses. In the present paper, interrelations between CRF-immunoreactive (ir) neurons, and noradrenergic, serotonergic, and dopaminergic afferents were studied using single and double immunolabeling for light and electron microscopy in the rat CeA. Dopaminergic axons formed dense plexus in the CeA overlapping with the localization of CRF-ir neurons, and their terminals formed frequent associations with CRF-ir somata. Contacts of serotonergic axons on CRF-ir neurons were few, and contacts of noradrenergic axons were the exception. Ultrastructurally, symmetric synapses of dopaminergic terminals on CRF-ir somata and dendrites were found. More than 83% of CRF-ir somata were contacted in single ultrathin sections. About half of these possessed two or more contacts. Of non-ir somata, 37% were contacted by dopaminergic terminals, and only 13% of these had two or more contacts. Correlative in situ hybridization indicated that CeA CRF-ir neurons may express receptor subtype dopamine receptor subtype 2. In conclusion, dopaminergic afferents appear to specifically target CeA CRF neurons. They are thus in a position to exert significant influence on the rat amygdaloid CRF stress system.  相似文献   

8.
This study assessed the effects of acute intravenous L-tryptophan (neutral amino acid precursor for serotonin) administration on cocaine-induced dopaminergic responses. Male Sprague-Dawley rats were surgically implanted with guide cannulas in the nucleus accumbens 5 days prior to the study and with vascular catheters (carotid artery and jugular vein) on the day prior to the study. Using microdialysis, extracellular nucleus accumbens dopamine levels were measured in freely moving rats. Following a 2 h equilibration period, animals were randomized (n=7-8 per group) to receive either a constant intravenous (IV) infusion of L-tryptophan (200 mg/kg/h) or an equal volume (2 ml/h) of saline. Ninety minutes into the infusion, cocaine (20 mg/kg) was injected intra-peritoneally. Cocaine increased nucleus accumbens microdialysate dopamine levels (500% at 30 min). This was associated with marked hyperactivity. Tryptophan infusion elevated plasma tryptophan (8-fold), and blunted the cocaine-induced increase in nucleus accumbens microdialysate dopamine levels by approximately 60%. Furthermore, tryptophan attenuated the cocaine-induced locomotor activity. These neurochemical and behavioral effects of tryptophan were associated with a marked increase in brain tissue serotonin content. The results of these studies demonstrate the feasibility of acute dietary manipulation of neurochemical and behavioral responses to cocaine. The duration, adaptation and tolerance to these effects remain to be elucidated.  相似文献   

9.
Currently, joint use of ketamine and 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) represents a specific combination of polydrug abuse. Long-lasting and even aggravated central neuronal toxicity associated with mixing ketamine and MDMA use is of special concern. This study was undertaken to examine the modulating effects of ketamine treatment on later MDMA-induced dopamine and serotonin neurotoxicity. We found that repeated administration of ketamine (50 mg/kg x 7) at 1.5-h intervals did not render observable dopamine or serotonin depletion in catecholaminergic target regions examined. In contrast, three consecutive doses of MDMA (20 mg/kg each) at 2-h intervals produced long-lasting dopamine and serotonin depletions in striatum, nucleus accumbens and prefrontal cortex. More importantly, pretreatment with binge doses of ketamine (50 mg/kg x 7 at 1.5-h intervals) 12 h prior to the MDMA dosing regimen (20 mg/kg x 3 at 2-h intervals) aggravated the MDMA-induced dopaminergic toxicity. Nonetheless, such binge doses of ketamine treatment did not affect MDMA-induced serotonergic toxicity. These results, taken together, indicate that binge use of ketamine specifically enhances the MDMA-induced central dopaminergic neurotoxicity in adult mouse brain.  相似文献   

10.
The mechanism of response decrement in hippocampal and dopaminergic neurons on repeating stimuli based on the dopamine-dependent negative feedback in the hippocampal--basal ganglia--thalamo--hippocampal loop is suggested. Activation of hippocampal neurons caused by new stimulus facilitates occurrence of reaction of dopaminergic cells due to their disinhibition through striatopallidal cells of nucleus accumbens and ventral pallidum. However, increase in dopamine level and activation accumbens and ventral pallidum. However, increase in dopamine level and activation of D2 receptors on the striatopallidal cell, while promoting depression of hippocampal inputs, prevents disinhibition of dopaminergic cells, and their reactions start their decrement. The subsequent decrease in D1 receptor activation leads to reduction of efficiency of neuron excitation in the hippocampal CA1 fields, as well as in striatonigral cells of nucleus accumbens. This leads to a decrease of disinhibition through a direct pathway via the basal ganglia of thalamic nucleus reunions which activates neurons of the CA1 field. This effect causes decrement of reactions of the hippocampal neurons, a subsequent reduction of dopaminergic cell disinhibition, and further decrement of their responses.  相似文献   

11.
Abstract: Monoamine-uptake blockers were applied focally (0.1–1,000 µ M ) through a dialysis probe in the nucleus accumbens of freely moving rats, and the extracellular concentrations of dopamine, norepinephrine, and serotonin were measured. The selective dopamine-uptake blocker GBR 12935 increased dopamine preferentially with only a small effect on norepinephrine, whereas the selective serotonin-uptake blocker fluoxetine increased serotonin output preferentially. In contrast, the selective norepinephrine-uptake blockers desipramine and nisoxetine enhanced not only norepinephrine, but also serotonin and dopamine appreciably. Cocaine increased all three amines with the greatest effects on dopamine and serotonin. As in our previous study on the ventral tegmental area, there was a positive association between dopamine and norepinephrine output when all blocker data were taken together. The present results suggest a contribution of the increase in norepinephrine, but not serotonin, to the enhancement of dopamine after cocaine applied focally in the nucleus accumbens.  相似文献   

12.
The purpose of the present study was to determine if serotonin was stimulatory to prolactin release by inhibition of the dopaminergic system or by stimulating release of a prolactin releasing factor (PRF). We measured the amount of prolactin secreted after administration of 30 mg/kg of 5-hydroxytryptophan (5-HTP) to male rats pretreated with fluoxetine (10 mg/kg) and compared it with the amount of prolactin released in male rats treated with αmethyl-p-tyrosine methyl ester (αMT) or various dopamine receptor blocking agents. In every experiment the serotonergic stimulus provided by 5-HTP in fluoxetine-pretreated rats released considerably more prolactin than did treatment with αMT or dopaminergic blockers. We conclude that serotonin releases prolactin not by inhibiting dopaminergic neurons but rather by stimulating the release of PRF.  相似文献   

13.
Individual differences in responses to mild, acute stressors in laboratory animals have commonly been observed in behavioural tests and at the level of hypothalamic-pituitary-adrenal axis responses. These differences are associated with dopamine transmission in the nucleus accumbens. Although the effect of mild stressors on dopamine transmission has been studied with microdialysis, it has not been studied at the level of the catecholaminergic network in the nucleus accumbens. In this study we have used microdialysis to measure extracellular concentrations of dopamine in vivo and immunocytochemistry for the enzyme tyrosine hydroxylase to assess the effect of a single exposure to novelty on the neurochemistry of the nucleus acc umbens in apomorphine-susceptible and apomorphine-unsusceptible rats. These rats are a valid animal model for studying individual differences in responses to environmental stressors and drugs of abuse. We demonstrated that a mild stressor like novelty increased the extracellular concentration of dopamine in the nucleus accumbens in apomorphine-susceptible rats to a larger and longer-lasting degree than in apomorphine-unsusceptible rats. Furthermore we demonstrated that novelty increased the tyrosine hydroxylase-immunoreactive fibre network in the nucleus accumbens shell of apomorphine-susceptible rats, which are rats that are particularly reactive to stressors, but not in the shell of apomorphine-unsusceptible rats, which are rats that are relatively stress-resistant. In conclusion, we have shown that the accumbal dopaminergic system of apomorphine-susceptible rats is more sensitive to an environmental stressor than that of apomorphine-unsusceptible rats. Combined with the fact that these animals also differ in their sensitivity to drugs of abuse, which are known to affect the dopaminergic system, these data provide a solid basis for further studying the differences in the dopaminergic responsiveness to drugs of abuse between apomorphine-susceptible and apomorphine-unsusceptible rats.  相似文献   

14.
Methylazoxymethanol (MAM)-induced cerebral hypoplasia resulted in a significant increase in densities of both serotonin uptake sites in frontal cortex and dopamine uptake sites in striatum, suggesting serotonergic and dopaminergic axon terminals were compressed in the smaller brain volumes. The density of S2 serotonin receptors in MAM-lesioned frontal cortex was decreased probably due to down-regulation, while densities of D1 and D2 dopamine receptors in striatum were identical between MAM-lesioned rats and control rats.  相似文献   

15.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

16.
Chronic stress induces in rats a decreased reactivity toward noxious stimuli (escape deficit), which can be reverted by antidepressant treatments. The present study reports that this condition of behavioral deficit is accompanied by a decreased level of extracellular dopamine in the nucleus accumbens shell. To assess whether this finding was the result of a decreased release or of an enhanced removal of dopamine, we acutely administered cocaine, and 2 h later d-amphetamine, to stressed and control rats. The increases in dopamine output observed in stressed animals after cocaine administration were significantly lower than those observed in control rats; whereas the total amount of dopamine released after d-amphetamine administration was similar in both groups of rats. These data suggest a reduced activity of dopaminergic neurons as the possible mechanism underlying dopamine basal level reduction in stressed animals. It is interesting that the stress group showed a locomotor response to cocaine not different from control rats, thus suggesting a condition of sensitization to dopamine receptor stimulation. Imipramine administered daily concomitantly with stress exposure completely reverted the escape deficit condition of chronically stressed rats. Moreover, stressed rats treated with imipramine showed basal and cocaine stimulated levels of extraneuronal dopamine similar to those observed in control animals.  相似文献   

17.
The behavioral effects of cocaine are enhanced following constitutive deletion of the serotonin(1B) receptor. The neural substrates mediating the enhanced response to cocaine are unknown. The present studies determined whether basal dopamine dynamics or cocaine-evoked dopamine levels are altered in projection areas of mesostriatal or mesoaccumbens dopamine neurons following serotonin(1B) receptor deletion. Male wild-type and serotonin(1B) knockout mice were implanted with microdialysis guide cannulas aimed at the dorsal striatum or nucleus accumbens. The zero net flux method of quantitative microdialysis was used to quantify basal extracellular dopamine concentrations (DA(ext)) and the extraction fraction of dopamine (E(d)), which provides an index of dopamine uptake. Conventional microdialysis techniques were used to quantify cocaine (0, 5.0, and 20.0 mg/kg)-evoked dopamine overflow. Basal DA(ext) and E(d) did not differ in striatum of wild-type and knockout mice. Similarly, cocaine-stimulated dopamine overflow did not differ between genotype. The basal E(d) did not differ in the nucleus accumbens of wild-type and knockout mice. However, DA(ext) was significantly elevated in the nucleus accumbens of knockout mice. Cocaine-evoked dopamine overflow (nM) was also enhanced in the nucleus accumbens of knockout mice. However, the cocaine-induced increase in dopamine levels, relative to basal values, did not differ between genotype. These data demonstrate that deletion of the serotonin(1B) receptor is associated with increases in basal DA(ext) in the nucleus accumbens. This increase is not associated with an alteration in E(d), suggesting increased basal dopamine release in these animals. It is hypothesized that these alterations in presynaptic neuronal activity are a compensatory response to constitutive deletion of the serotonin(1B) receptor and may contribute to the enhanced behavioral effects of psychostimulants observed in knockout mice.  相似文献   

18.
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attentiondeficit disorder (ADHD). The behavioural problems have been suggested to be secondary to altered reinforcement mechanisms in which nucleus accumbens dopaminergic activity plays an important role. Interaction between the noradrenergic and dopaminergic system in the nucleus accumbens has been implicated in the locomotor hyperactivity and impaire discriminative performance of SHR. The present study therefore investigated whether there was any change in the 2-adrenoceptor mediated inhibition of dopamine release from nucleus accumbens slices of SHR in comparison with their normotensive Wistar-Kyoto (WKY) controls. The electrically stimulated release of [3H]dopamine (DA) from nucleus accumbens slices was decreased to a similar extent by UK14,304, an 2-adrenoceptor agonist, in SHR and WKY. Basal norepinephrine (NE) levels were increased in locus coeruleus (LC) and A2 noradrenergic nuclei, but not in the A1 nucleus of SHR, while basal serotonin (5-HT) levels were increased in all these pons-medulla nuclei. These results suggest that a primarily dysfunctional LC and A2 nucleus does not have a secondary effect on dopaminergic transmission in the nucleus accumbens via 2-adrenoceptor mediated inhibition of DA release. Basal monoamine levels in several brain areas of SHR were significantly different from that of WKY. DA, and 5-HT turnover were decreased in SHR versus WKY suggesting hypofunctional dopaminergic and serotonergic systems in some brain areas of SHR.  相似文献   

19.
Cholecystokinin (CCK) and dopamine (DA) co-exist in ventral tegmental neurons which project via the mesencephalic pathway to the nucleus accumbens of the rat. CCK and DA are located in separate neurons in the substantia nigra which projects via the nigrostriatal pathway to the caudate nucleus in the rat. The functional significance of this peptide-amine co-localization was investigated using behavioral and neurophysiological techniques. CCK injected directly into the nucleus accumbens potentiated apomorphine-induced stereotypy and dopamine-induced hyperlocomotion. CCK injected directly into the caudate nucleus had no effect on apomorphine-induced stereotypy or dopamine-induced hyperlocomotion CCK injected alone into either site did not induce stereotypy or hyperlocomotion. The dose-response curve to apomorphine induction of stereotypy was shifted to the left by CCK, indicating increased sensitivity to the dopaminergic agonist. Neurophysiological analysis of the firing rate of ventral tegmental neurons demonstrated that CCK produced a left-shift in the dose-response curve of apomorphine on inhibition of neuronal firing. These data suggest that CCK acts as a modulator of dopamine, increasing neuronal responses to dopaminergic agonists. The potentiation of dopamine by CCK may be specific to the mesolimbic neurons, where CCK and DA co-exist in the rat.  相似文献   

20.
Classically, two neurotransmitters in the brain have been implicated in thermoregulation: 5-hydroxytryptamine and norepinephrine. A dopamine action is less well-known and usually has been studied by means of pharmacological rather than physiological procedures. In the present work using a physiological approach to the problem, the role of different central dopaminergic systems in the thermoregulatory response of rats exposed to cold (4 degrees C) or warm (45 degrees C) environments has been studied. Rostral incertohypothalamic neurons in the medial preoptic area synthesized and released more dopamine in response to a warm but not to a cold environment. On the other hand DA and DOPAC levels in nigrostriatal systems were decreased by cold but not warm environments. The dopaminergic neurons projecting to nucleus accumbens or hypothalamus do not appear to be related to the thermoregulatory response in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号