首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selenium-dependent glutathione peroxidase activities of two human cell lines, the colon carcinoma HT29 and the mesothelioma P31, cultured in medium containing 2% serum, increased from 195 to 541 and from 94 to 361 units/mg of protein respectively after supplementation with 100 nM-selenite. The catalase activity remained unchanged by this treatment. The effects of the obtained variation in glutathione peroxidase activities were investigated by exposing cells to H2O2 and t-butyl hydroperoxide. Selenite supplementation resulted in a decrease in H2O2-induced DNA single-strand breaks in both HT29 and P31 cells. A small, but significant, decrease in the number of DNA single-strand breaks for low doses (10-50 microM) of t-butyl hydroperoxide was found only in P31 cells and not in HT29 cells. We could detect neither induction of double-strand breaks (detection limit approx. 1000 breaks per cell) nor DNA-protein cross-links after exposing the cells to the two peroxides. In spite of the apparent protective effect of increased glutathione peroxidase activity on DNA single-strand break formation, there were no differences between selenite-supplemented and non-supplemented cells in cell survival after exposure to peroxide.  相似文献   

2.
Pang ZJ  Chen Y  Zhou M 《Cytokine》2000,12(7):944-950
We have previously found that L929 cell conditioned medium (L929-CM) could protect mouse peritoneal macrophages from oxidative injury. To uncover the mechanism further, we investigated the effect of L929-CM on the oxidative injury caused by tbOOH to RAW264.7 cell lines. The results showed that L929-CM could protect RAW264.7 cells from oxidative injury (presented by cell morphology and cell survival rate), and L929-CM could also improve total superoxide dismutase (SOD), selenium-dependent and non-selenium-dependent glutathione peroxidase (SeGPx and non-SeGPx) activities in RAW264.7 cells. RT-PCR analysis showed that, L929-CM could induce plasma glutathione peroxidase (PLGPx) mRNA expression, while there was no inducing effect of L929-CM on phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA expression in RAW264.7 cells. 5 microg/ml actinomycin D, 30 microg/ml cycloheximide (de novo protein synthesis inhibitor) and 50 microg/ml acetovanilone (intracellular superoxide anion production inhibitor) had no effects in attenuating the induction of PLGPx expression by L929-CM.  相似文献   

3.
An investigation of the cellular response of the freshwater microalga Chlorella zofingiensis to exogenous selenium showed that Chlorella cells can tolerate sodium selenite up to a concentration of 100 mg l−1. Cells grown in such a selenium-supplemented medium accumulated boiling-stable proteins in a concentration-dependant manner. Western blot analysis revealed that three of these boiling-stable proteins cross-reacted with anti-dehydrin antibody. Selenium was also found to exert an effect on antioxidative enzymes: superoxide dismutase (Fe-SOD and Mn-SOD isoforms) accumulated in response to selenium stress of 100 mg l−1 sodium selenite, as did a new form of selenium-dependent glutathione peroxidase. Upon transfer of the cells to a selenium-free medium, the boiling-stable proteins, the superoxide dismutase isoforms and the selenium-dependent glutathione peroxidase were all down regulated. The accumulation of boiling-stable proteins and the increased activities of the antioxidant enzymes in selenium-treated Chlorella cells suggest that these compounds are probably involved in the mechanism(s) of selenium tolerance of this alga.  相似文献   

4.
The aim of this study was to devise conditions for manipulation of the activity of selenium-dependent glutathione peroxidase in cell lines by means of variation in culture medium contents of selenite and fetal calf serum. Nine different cell lines were studied. A low glutathione peroxidase activity was, in most cases, obtained by the use of a medium with a low (2%) serum content. Selenite induced in most of the cell lines an increase in glutathione peroxidase activity, with a plateau ranging from 10 nM to 300-1000 nM. Growth-retarding effects of selenite became apparent at 300-2000 nM, showing a large cell line variation. Supplementation with 50-100 nM selenite for 1 week should generally be suitable for maximal glutathione peroxidase induction. The selenium contents of serum batches were highly variable, pointing to the importance of using only one well-defined, preferably low-selenium, batch. The glutathione peroxidase activities varied considerably between cell lines and the selenite-induced increases ranged from negligible to more than 10-fold. The availability of cell lines with such variable responses should be valuable for experiments aimed at evaluating the importance of glutathione peroxidase and selenium compounds independently of glutathione peroxidase for the protection against oxidative insult.  相似文献   

5.
Partial reduction of molecular oxygen produces reactive oxyradicals, including the superoxide anion radical (O - 2 ) and hydroxyl radical (·OH). The gas gland functions under hyperoxic and acidic conditions and therefore is likely to be subjected to enhanced oxidative stress. Aspects of pro- and antioxidant processes in gas gland were compared with other tissues likely to be subject to differing degrees of oxyradical production, viz. liver (site of chemically-mediated oxyradical production), gills and skeletal muscle. Antioxidant enzyme activities (superoxide dismutase, catalase, selenium-dependent and total glutathione peroxidase) per g wet weight were highest in liver and lowest in muscle. Catalase and glutathione peroxidase activies per g wet weight were higher in gills than in gas gland, whereas the reverse was seen for superoxide dismutase. Cytosolic superoxide dismutase activities per mg protein were two- and nine-fold higher in gas gland than in liver and gills. The pH characteristics of the antioxidant enzymes were generally similar in all the tissues. Glutathione, vitamin E and unsaturated (peroxidizable) lipid levels were generally highest in liver followed by gas gland. Lipid peroxidation (malonaldehyde equivalents) was evident in all tissues except gas gland. Hydrogen peroxide and O - 2 were involved in the NAD(P)H-dependent ferric/EDTA-mediated formation of ·OH (as measured by 2-keto-4-methiolbutyrate oxidation) by mitochondrial and postmitochondrial fractions of gas gland. Tissue maximal potentials for ·OH production paralled superoxide dismutase but not catalase or glutathione peroxidase activities. Overall, the results confirm the presence of effective antioxidant defences in gas gland and support previous workers' contentions of a central role for superoxide dismutase in this process.Abbreviations EDTA di-sodium ethylenediaminetetra-acetic acid - G-6-P glucose-6-phosphate - GPX total glutathione peroxidase - GSH reduced glutathione - GSSG oxidised glutathione - GST glutathion-S-transferase - HPLC high performance liquid chromatography - KMBA 2-keto-4-methiolbutyric acid - MOPS 3-[N-morpholino] propane-sulphonic acid - PMS postmitochondrial supernatant - Se-GPX selenium-dependent glutathion peroxidase - SOD superoxide dismutase - TCA trichloroacetic acid  相似文献   

6.
Intraperitoneal injection of rats with diethyldithiocarbamate (1.2 g/kg body wt) led to maximum diminution of superoxide dismutase activity at 1 hr by 86 and 84% in liver and red blood cell respectively with a gradual return to the normal level at 48 hr after administration of injection. Significant inhibition of selenium-dependent glutathione peroxidase was also observed, which returned to normal at 48 hr after administration of injection. However, maximum decline in its activity was at 12 hr by 52 and 73% in liver and red blood cells respectively. No significant difference in tissue level of selenium-independent glutathione peroxidase was observed during time course study after diethyldithiocarbamate administration. It is possible that inhibition of superoxide dismutase by diethyldithiocarbamate leads to accumulation of superoxide anion which in turn inactivates selenium-dependent glutathione peroxidase by its reaction with selenium at the active site of the enzyme.  相似文献   

7.
Antioxidant defense systems of two lipidopteran insect cell lines   总被引:1,自引:0,他引:1  
Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines were found to contain unique assemblages of antioxidant enzymes. Specifically, the Sf-9 insect cell line contained Manganese and Copper-Zinc superoxide dismutase (MnSOD and CuZnSOD) for reducing the superoxide radical (O(2)(*-)) to hydrogen peroxide (H(2)O(2)) and ascorbate peroxidase (APOX) for reducing the resulting H(2)O(2) to H(2)O. Approximately one third of the total SOD activity was found to be MnSOD. The Tn-5B1-4 cells were also found to contain MnSOD (approximately two thirds of the total SOD activity), CuZnSOD and APOX activities. However, the Tn-5B1-4 cell line, in contrast to the Sf-9 cell line, contained catalase (CAT) activity for reducing H(2)O(2) to H(2)O. Both the Sf-9 and Tn-5B1-4 cell lines contained glutathione reductase and dehydroascorbic acid reductase activities for regenerating the reduced forms of glutathione and ascorbic acid, respectively. In addition, both cell lines contained glutathione S-transferase peroxidase activity towards hydroperoxides other than H(2)O(2). Finally, neither cell line contains the glutathione peroxidase activity that is ubiquitous in mammalian cells.  相似文献   

8.
Duodena from Selenium (Se)/vitamin E-depleted 19 d chick embryos were cultured in vitro for 0-30 h. The addition of sodium selenite to the culture medium was associated with increased selenium-dependent glutathione peroxidase (SeGSHpx) activity after 24 h of incubation. In the absence of Se or in the presence of sodium ascorbate supplementation alone, SeGSHpx activity showed a gradual decline over the same time period. When ascorbate was added, along with sodium selenite, SeGSHpx activity was increased earlier and to a greater extent than in the presence of Se alone. These observations show that ascorbate can influence the metabolism of sodium selenite, resulting in increased SeGSHpx activity.  相似文献   

9.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

10.
The activity of aortic glutathione peroxidase, a selenium-dependent enzyme, significantly decreased in rats 4 and 8 months after the injection of streptozotocin (STZ). Catalase activity was shown to occur at low levels in rat aorta and was not influenced by the diabetic state. Superoxide dismutase activity was less than detectable. The activity of selenium-dependent glutathione peroxidase in kidney, but not in lung and liver, increased in diabetic rats. Catalase and superoxide dismutase activities in the kidney were not altered. The plasma lipid peroxide value increased in diabetic rats. The selenium content in plasma of diabetic rats increased markedly while the increase in plasma glutathione peroxidase activities was insignificant. The observed abnormalities in plasma of STZ rats were improved by insulin treatment. The defects in glutathione peroxidase in the diabetic rat aorta were restored by insulin treatment. These results may suggest that the capacity of the antioxidative defense system in the aorta decreased in the diabetic state, and this may help clarify the mechanism of the pathogenesis of endothelial dysfunction associated with diabetes.  相似文献   

11.
CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase form the primary enzymic defense against toxic oxygen reduction metabolites in cells. To test the importance of these protective enzymes in the cellular radiation response, the enzymic activities of seven different human cell lines were determined in parallel with their clonogenic survival characteristics. A positive correlation between the content of glutathione peroxidase in cell lines and their extrapolation numbers (n) and quasithreshold doses (Dq) was detected. Between the cellular contents of the other enzymes and D0, n, and Dq no positive correlations could be established. An interesting finding was a very high Mn superoxide dismutase content in a malignant mesothelioma cell line P7, which had an extremely high D0, 5.0 Gy.  相似文献   

12.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

13.
Here, we investigated the effect of induction of the Epstein-Barr virus (EBV) viral lytic cycle on the oxidant/antioxidant balance in three lymphoblastoid cell lines: B95-8, Raji, and LCL C1. The induction of the EBV lytic cycle was done by a non-stressing dose of 12-0-tetradecanoylphorbol-13-acetate (8 nM). Oxidative stress was assessed by measuring malondialdehyde as a parameter of lipid peroxidation, the levels of glutathione, and the activities of three antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase). After 48 h (peak of lytic cycle), a significant decrease in superoxide dismutase activity was observed in B95-8, Raji, and LCL C1 cells (P < 0.05). In addition, in B95-8 cells also a significant decrease of catalase activity was detected (P < 0.05). The glutathione peroxidase activity and the glutathione level were not significantly modified by the induction in any of the cell lines. We found a significant rise in malondialdehyde levels in B95-8, Raji, and LCL C1 cells after the induction of the lytic cycle compared to controls (P < 0.05). In conclusion, induction of EBV lytic cycle in lymphoblastoid cells causes increased oxidative stress in the host cells within 48 h, a process that could be involved in malignant transformations.  相似文献   

14.
15.
Metals are known to influence the oxidative status of marine organisms, and antioxidant enzymes have been often proposed as biomarkers of effect. The clam Ruditapes decussatus is a well-known metal bioindicator. In this species cadmium (Cd) induces metallothionein (MT) synthesis only after 7 days of exposure. Before MT synthesis is induced, the other mechanisms capable of handling the excess of Cd are unknown. In order to identify some of these mechanisms, variations in antioxidant systems (superoxide dismutase, catalase, selenium-dependent glutathione peroxidase and non-selenium-dependent glutathione peroxidase), malondialdehyde (MDA) and MT were studied in the gills of R. decussatus exposed to different Cd concentrations (4, 40 and 100 gl-1) for 28 days. These parameters, together with total proteins and Cd concentrations, were measured in the gills of the clams over different periods of exposure. Results indicate that Cd accumulation increased linearly in the gills of R. decussatus with the increase in Cd concentration. This increase induces an imbalance in the oxygen metabolism during the first days of Cd exposure. An increase in cytosolic superoxide dismutase (SOD) activity and a decrease in mitochondrial SOD activity was observed at the same time as or after a decrease in cytosolic and mitochondrial catalase activity and of selenium-dependent and non-selenium-dependent glutathione peroxidase activity. After 14 days of exposure, Cd no longer affect these enzymes but there was elevation of other cellular activities, such as MDA and MT production. MT bound excess Cd present in the cell. These variations in these parameters suggest their potential use as biomarkers of effects such as oxidative stress resulting from Cd contamination in molluscs.  相似文献   

16.
Three groups of New Zealand women were given daily in a double blind randomised study, 200 micrograms Se as sodium selenite, 170 mg alpha-tocopherol or a placebo for 4 wk. Activities of glutathione-S-transferase, superoxide dismutase and catalase were assayed in erythrocytes, plasma and platelets and in liver and muscle biopsy tissues. No changes in activities of any of these tissue enzymes were observed in any of the three groups. There were also no changes in non-selenium dependent glutathione peroxidase activities in liver or plasma. The lack of changes in any of these enzymes following selenium supplementation suggests that adaptive changes to the low selenium status of these subjects had not occurred through these lipid peroxidation defense mechanisms.  相似文献   

17.
Rats pre-administered with alpha-tocopherol (10 mgs/day) for 7 days afforded a significant protection at the tissue level against the lowering of superoxide dismutase and glutathione peroxidase, especially the selenium-dependent glutathione peroxidase. The protective action of alpha-tocopherol in the diethyldithiocarbamate treated rats may be attributed to its antioxidant/free radical scavenging action. It is concluded that selenium-dependent glutathione peroxidase and alpha-tocopherol act in a complementary fashion to block free radical formation.  相似文献   

18.
The relationship between coelomic injections of mercuric chloride doses and osmoregulatory responses was measured. Response parameters were weight increases and blood osmolarity decreases 72 hr after dose administration. Massive edema and large decreases in blood osmolarity could be completely prevented by subcutaneous injections of equimolar sodium selenite. Mercury induced damage did not involve alterations of either selenium-dependent or non-selenium-dependent glutathione peroxidase activities.  相似文献   

19.
The infection of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) resulted in increased levels of lipid hydroperoxides and protein carbonyls. In addition, the viral infection resulted in a significant decrease in the reduced glutathione to oxidized glutathione (2GSH/GSSG) ratio. These results are all consistent with an increased level of oxidative stress as a result of the viral infection. It was also observed that the oxidative damage corresponded to reduced cell viability, i.e., the results are consistent with the premise that oxidative damage contributes to cell death. Finally, the measured intracellular activities of most of the antioxidant enzymes, specifically manganese superoxide dismutase (MnSOD), ascorbate peroxidase (APOX), and catalase (CAT, not present in Sf-9 cells), did not significantly decrease following viral infection. In contrast, the measured activity of copper-zinc superoxide dismutase (CuZnSOD) decreased in the Sf-9 and Tn-5B1-4 cells following AcMNPV infection.  相似文献   

20.
HL60 cells exposed to increasing paraquat concentrations were screened for clones without increased superoxide dismutase activities in an effort to examine cytotoxic events occurring after superoxide production. The resulting resistance to paraquat was not associated with alterations in paraquat uptake, catalase, or NADPH-P450 reductase activity, but to alterations in glutathione-dependent enzyme activities. While increases in glutathione-dependent enzymes upon exposure to paraquat have been reported, the increases were considered a secondary response to increases in superoxide dismutase activities. Our results demonstrate that glutathione-dependent enzymes alone provide protection against paraquat toxicity, and their increase upon exposure to paraquat can be independent of the response of superoxide dismutases. This supports a previous finding that cells resistant to Adriamycin, based on elevated glutathione peroxidase and transferase activities are also cross-resistant to paraquat. Unlike this previous report, the increase in glutathione peroxidase was not a persistent genetic event, as activities returned to normal upon removal of paraquat. An isolated increase in glutathione peroxidase without accompanying increases in superoxide dismutases was a rare event, as nearly all clones examined after exposure to paraquat had increased superoxide dismutase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号