首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.  相似文献   

2.
In vertebrates, there are two related genes, Sulf1 and Sulf2 that code for extracellular heparan sulphate 6-0-endosulphatases. These enzymes act to post-synthetically remodel heparan sulphate chains, generating structural diversity of cell surface HSPGs; this activity provides an important mechanism to modulate developmental cell signalling. Here we describe the expression and activity of Xenopus tropicalis Sulf2 (XtSulf2), which like XtSulf1, can act extracellularly to inhibit BMP4 and FGF4 signalling. Consistent with its discrete expression in regions of the anterior developing nervous system, we found that overexpression of XtSulf2 disrupts the expression of a set of neural markers and inhibits the migration of the neural crest. Using a combination of grafting experiments and antisense morpholino based knockdown studies in Xenopus embryos, we demonstrate that endogenous XtSulf1 and XtSulf2 play an important role during cranial neural crest cell migration in vivo.  相似文献   

3.
Heparan sulfate proteoglycans (HSPGs) are glycoconjugates bearing heparan sulfate (HS) chains covalently attached to core proteins, which are ubiquitously distributed on the cell surface and in the extracellular matrix. HSPGs interact with a number of molecules mainly through HS chains, which play critical roles in diverse physiological and disease processes. Among these, recent vertebrate studies showed that HSPGs are closely involved in synapse development and function. However, the detailed molecular mechanisms remain elusive. Genetic studies from fruit flies, Drosophila melanogaster, have begun to reveal the molecular mechanisms by which HSPGs regulate synapse formation at neuromuscular junctions (NMJs). In this review, we introduce Drosophila studies showing how HSPGs regulate various signaling pathways in developing NMJs. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

4.
Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.  相似文献   

5.

Background

Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction.

Methodology/Principal Findings

Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([35S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30–33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase.

Conclusions/Significance

Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.  相似文献   

6.
7.
Fibroblast growth factors (FGFs) require heparan sulfate proteoglycans (HSPGs) as cofactors for signaling. The heparan sulfate chains (HS) mediate stable high affinity binding of FGFs to their receptor tyrosine kinases (FR) and may specifically regulate FGF activity. A novel in situ binding assay was developed to examine the ability of HSPGs to promote FGF/FR binding using a soluble FR fusion construct (FR1-AP). This fusion protein probe forms a dimer in solution, simulating the dimerization or oligomerization that is thought to occur at the cell surface physiologically. In frozen sections of human skin, FGF-2 binds to keratinocytes and basement membranes of epidermis and dermal blood vessels. In contrast, in skin preincubated with FGF-2, FR1-AP binds avidly to FGF-2 immobilized on keratinocyte cell surfaces, but fails to bind to basement membranes at the dermo-epidermal junction or dermal microvessels despite the fact that these structures bind large amounts of FGF-2. Apparently, basement membrane and cell surface HSPGs differ in their ability to mediate the assembly of a FGF/FR signaling complex presumably due to structural differences of the heparan sulfate chains.  相似文献   

8.
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.  相似文献   

9.
Heparan sulfate proteoglycans (HSPGs) play vital roles in many steps of angiogenesis under physiological and pathological conditions. HSPGs on endothelial cell surfaces act as co-receptors for a variety of pro-angiogenic growth factors such as FGF and VEGF and anti-angiogenic factors such as endostatin. However, the fine structural requirements of these binding interactions are dependent on the sulfation patterns of HSPGs. Previous studies have shown that Heparitinases, heparin lyases isolated from Flavobacterium heparinum, can cleave heparan sulfate chains. These enzymes have been shown to reduce tumor—derived neovascularization in vivo in mice. However, the results from these experiments could not conclusively pinpoint the origin of the HS fragments. Thus, in this study we utilized an in vitro assay to assess the differential effects of Heparitinase I (Hep I) and Heparitinase III (Hep III) on endothelial tube formation. Hep III was found to be a more potent inhibitor of tube formation than Hep I. In conclusion, differential cleavage of endothelial cell surface bound HS can affect the extent of inhibition of tube formation.  相似文献   

10.
Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.  相似文献   

11.
Heparan sulfate proteoglycans (HSPGs) play critical roles in the distribution and signaling of growth factors, but the molecular mechanisms regulating HSPG function are poorly understood. Here, we characterized Sulf1, which is a Drosophila member of the HS 6-O endosulfatase class of HS modifying enzymes. Our genetic and biochemical analyses show that Sulf1 acts as a novel regulator of the Wg morphogen gradient by modulating the sulfation status of HS on the cell surface in the developing wing. Sulf1 affects gradient formation by influencing the stability and distribution of Wg. We also demonstrate that expression of Sulf1 is induced by Wg signaling itself. Thus, Sulf1 participates in a feedback loop, potentially stabilizing the shape of the Wg gradient. Our study shows that the modification of HS fine structure provides a novel mechanism for the regulation of morphogen gradients.  相似文献   

12.
Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. GSCs were lost in both male and female gonads of mutants deficient for HS biosynthesis. dally, a Drosophila glypican, is expressed in the female GSC niche cells and is responsible for maintaining the GSC niche. Ectopic expression of dally in the ovary expanded the niche area, showing that dally is required for restriction of the GSC niche space. Interestingly, the other glypican, dally-like, plays a major role in regulating male GSC niche maintenance. We propose that HSPGs define the physical space of the niche by serving as trans coreceptors, mediating short-range signaling by secreted factors.  相似文献   

13.
Cell surface heparan sulfate proteoglycans (HSPGs) play significant roles in the regulation of developmental signaling, including vascular endothelial growth factor (VEGF), fibroblast growth factor, Wnt and bone morphogenetic protein signaling, through modification of their sulfation patterns. Recent studies have revealed that one of the functions of heparan sulfate 6-O-endosulfatase (Sulf) is to remove the sulfate from the 6-O position of HSPGs at the cell surface, thereby regulating the binding activities of heparan sulfate (HS) chains to numerous ligands and receptors in animal species. In this study, we focused on the sea urchin Hemicentrotus pulcherrimus homolog of Sulf (HpSulf), and analyzed its expression pattern and functions during development. HpSulf protein was present throughout development and localized at cell surface of all blastomeres. In addition, the HS-specific epitope 10E4 was detected at the cell surface and partially colocalized with HpSulf. Knockdown of HpSulf using morpholino antisense oligonucleotides (MO) caused abnormal morphogenesis, and the development of MO-injected embryos was arrested before the hatched blastula stage, indicating that HpSulf is necessary for the early developmental process of sea urchin embryos. Furthermore, we found that injection of HpSulf mRNA suppressed the abnormal skeleton induced by overexpression of HpVEGF mRNA, whereas injection of an inactive form of HpSulf mRNA, containing mutated cysteines in the sulfatase domain, did not have this effect. Taken together, these results suggest that HpSulf is involved in the regulation of various signal transductions, including VEGF signaling, during sea urchin development.  相似文献   

14.
Heparan sulfate (HS) is a randomly sulfated polysaccharide that is present on the cell surface and in the extracellular matrix. The sulfated structures of HS were synthesized by multiple HS sulfotransferases, thereby regulating various activities such as growth factor signaling, cell differentiation, and tumor metastasis. Therefore, if the sulfated structures of HS could be artificially controlled, those manipulations would help to understand the various functions depending on HS. However, little knowledge is currently available to realize the mechanisms controlling the expression of such enzymes. In this study, we found that the ratio of 6-O-sulfated disaccharides increased at 3?h after adrenaline stimulation in mouse fibroblast cells. Furthermore, adrenaline-induced up-regulation of HS 6-O-sulfotransferase-1 (6-OST-1) was controlled by Src-ERK1/2 signaling pathway. Finally, inhibiting the signaling pathways for 6-OST-1 intentionally suppressed the adrenaline-induced structural alteration of HS. These observations provide fundamental insights into the understanding of structural alterations in HS by extracellular cues.  相似文献   

15.
Cell surface heparan sulfate proteoglycan (HSPG)-mediated endocytosis lowers the yield of recombinant human bone morphogenetic proteins (rhBMPs), such as rhBMP-2 and rhBMP-4, from Chinese hamster ovary (CHO) cell cultures. Exogenous recombinant human growth/differentiation factor-5 (rhGDF-5), a member of the BMP family, bound to cell surface HSPGs and was actively internalized into CHO cells. Knockdown of heparan sulfate (HS) synthesis enzymes in CHO cells revealed that the chain length and N-sulfation of HS affected the binding of rhGDF-5 to HSPGs and subsequent rhGDF-5 internalization. To increase product yield by minimizing rhGDF-5 internalization in recombinant CHO (rCHO) cell cultures, heparin, and dextran sulfate (DS) of various polysaccharide chain lengths, which are structural analogs of HS, were examined for blockage of rhGDF-5 internalization. Heparin fragments of four monosaccharides (MW of 1.2 kDa) and DS (MW of 15 kDa) did not inhibit rhGDF-5 internalization whereas unfractionated heparin and DS of 200 kDa could significantly inhibit it. Compared to the control cultures, supplementation with unfractionated heparin or DS of 200 kDa at 1 g L-1 resulted in more than a 10-fold increase in the maximum rhGDF-5 concentration. Taken together, the supplementation of structural HS analogs improved rhGDF-5 production in rCHO cell cultures by inhibiting rhGDF-5 internalization.  相似文献   

16.
X Lin  N Perrimon 《Matrix biology》2000,19(4):303-307
Heparan sulfate proteoglycans (HSPGs) are abundant molecules associated with the cell surface and extracellular matrix, and consist of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. Although these molecules have been the focus of intense biochemical studies in vitro, their biological functions in vivo were unclear until recently. We have undertaken an in vivo functional study of HSPGs in Drosophila. Our studies, as well as others, demonstrate the critical roles of HSPGs in several major signaling pathways, including ibroblast growth factor (FGF), Wnt, Hedgehog (Hh) and TGF-beta. Our results also suggest that specific HS GAG chain modifications, as well as specific HSPG protein cores, are involved in specific signaling pathways.  相似文献   

17.
Shi ZD  Wang H  Tarbell JM 《PloS one》2011,6(1):e15956

Background

Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.

Methodology/Principal Findings

Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.

Conclusions/Significance

We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering.  相似文献   

18.
The 6-O sulfation states of cell surface heparan sulfate proteoglycans (HSPGs) are dynamically regulated to control the growth and specification of embryonic progenitor lineages. However, mechanisms for regulation of HSPG sulfation have been unknown. Here, we report on the biochemical and Wnt signaling activities of QSulf1, a novel cell surface sulfatase. Biochemical studies establish that QSulf1 is a heparan sulfate (HS) 6-O endosulfatase with preference, in particular, toward trisulfated IdoA2S-GlcNS6S disaccharide units within HS chains. In cells, QSulf1 can function cell autonomously to remodel the sulfation of cell surface HS and promote Wnt signaling when localized either on the cell surface or in the Golgi apparatus. QSulf1 6-O desulfation reduces XWnt binding to heparin and HS chains of Glypican1, whereas heparin binds with high affinity to XWnt8 and inhibits Wnt signaling. CHO cells mutant for HS biosynthesis are defective in Wnt-dependent Frizzled receptor activation, establishing that HS is required for Frizzled receptor function. Together, these findings suggest a two-state "catch or present" model for QSulf1 regulation of Wnt signaling in which QSulf1 removes 6-O sulfates from HS chains to promote the formation of low affinity HS-Wnt complexes that can functionally interact with Frizzled receptors to initiate Wnt signal transduction.  相似文献   

19.
Kamimura K  Maeda N  Nakato H 《Glycobiology》2011,21(5):607-618
Heparan sulfate proteoglycans (HSPGs) participate in a wide range of biological processes through interactions with a number of ligand proteins. The nature of these interactions largely depends on the heparan sulfate (HS) moiety of HSPGs, which undergoes a series of modifications by various HS-modifying enzymes (HSMEs). Although the effects of alterations in a single HSME on physiological processes have started to be studied, it remains elusive how a combination of these molecules control the structure and function of HS. Here we systematically manipulated the HS structures and analyzed their effect on morphogenesis and signaling, using the genetically tractable model organism, Drosophila. We generated transgenic fly strains overexpressing HSMEs alone or in combination. Unsaturated disaccharide analyses of HS showed that expression of various HSMEs generates distinct HS structures, and the enzymatic activities of HSMEs are influenced by coexpression of other HSMEs. Furthermore, these transgenic HSME animals showed a different extent of lethality, and a subset of HSMEs caused specific morphological defects due to defective activities of Wnt and bone morphogenetic protein signaling. There is no obvious relationship between HS unsaturated disaccharide composition and developmental defects in HSME animals, suggesting that other structural factors, such as domain organization or sulfation sequence, might regulate the function of HS.  相似文献   

20.
The syndecans, cell surface heparan sulfate proteoglycans (HSPGs), bind numerous ligands via their HS glycosaminoglycan chains. The response to this binding is flavored by the identity of the core protein that bears the HS chains. Each of the syndecan core proteins has a short cytoplasmic domain that binds cytosolic regulatory factors. The syndecans also contain highly conserved transmembrane domain and extracellular domains for which important activities are slowly emerging. These protein domains, which will be the focus of this review, localize the syndecan to sites at the cell surface during development where they collaborate with other receptors to regulate signaling and cytoskeletal organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号