首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The presence and activity of alkaline phosphatase in SAOS-2 and TE-85 human osteosarcoma cells grown in culture were examined at the ultrastructural level. A monoclonal antibody raised against purified human bone osteosarcoma alkaline phosphatase was used to localize the enzyme in cultures of the osteosarcoma cells. Similar cultures were analyzed for alkaline phosphatase activity using an enzyme cytochemical method with cerium as the capture agent. Alkaline phosphatase was immunolocalized at the light microscopic level in an osteogenic sarcoma and ultrastructurally on the SAOS-2 cell membrane and the enclosing membrane of extracellular vesicular structures close to the cells. In contrast, the TE-85 cells were characterized by the absence of all but a few traces of immunolabeling at the cell surface. Enzyme cytochemical studies revealed strong alkaline phosphatase activity on the outer surface of the SAOS-2 cell membrane. Much lower enzyme activity was observed in the TE-85 cells. The results support biochemical data from previous studies and confirm that SAOS-2 cells have a significantly greater concentration of alkaline phosphatase at the plasma membrane.  相似文献   

2.
Alkaline phosphatase from calf intestine (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) is reversibly inhibited at pH 8.0 by incubation with chelating agents. Complete reactivation may be achieved by stoichiometric addition of Zn2+. Atomic absorption spectrometry was used to demonstrate the linear correlation between Zn2+ content and degree of reactivation. The reversibly inhibited enzyme contained 1 Zn2+ per subunit whereas 2 Zn2+ were found in both the reactivated and the native enzyme. At more alkaline pH-values, inactivation by chelating agents becomes irreversible; under such conditions the inactivated alkaline phosphatase still contains 1 Zn2+ per subunit. The conformational changes resulting from the loss of Zn2+ and leading to irreversible inactivation were investigated by optical rotatory dispersion, immunological techniques, and ultraviolet and fluorescence spectroscopy. Azocoupling of the alkaline phosphatase with diazonium-1-H-tetrazole and Zn2+ content measurement of azocoupled enzyme probes indicated that 2 histidine residues per subunit are involved in binding of the catalytically important Zn2+.  相似文献   

3.
The alcohol dehydrogenase (ADH) from Baker's yeast is very active but extremely unstable under several different conditions. Mild immobilization methods such as one-point attachment to agarose activated with cyanogen bromide groups or ionic adsorption to agarose activated with charged groups allow high activity recoveries (80–100%) but do not promote protein stabilization. In contrast, immobilization methods that force the enzyme to be covalently attached at multiple points on the support fully inactivate the enzyme. Herein, we propose an interesting solution to address the dichotomy between activity and stability. We have developed a protocol in which the enzyme is immobilized on agarose activated with glyoxyl groups in the presence of acetyl cysteine, which results in the recovery of 25% of the enzyme activity but increases the thermal stability of the soluble enzyme 50-fold. However, this immobilization technique does not stabilize the enzyme quaternary structure. Hence, a post-immobilization technique using functionalized polymers has been used to cross-link all enzyme subunits. In this method, polycationic polymers (polyethylenimine) cross-link the quaternary structure with a negligible effect on catalytic activity, which results in a derivative that is 5-fold more stable than non-cross-linked derivatives under very dilute and acidic conditions that highly favor subunit dissociation. Therefore, the stability was increased 500-fold for this optimal derivative compared to diluted soluble enzyme, although the relative expressed activity was low (25%). However, the low expressed activity may be overcome by designing immobilized biocatalysts with high volumetric activities.  相似文献   

4.
1. Liver and bone alkaline phosphatase isoenzymes were solubilized with the zwitterionic detergent sulphobetaine 14, and purified to homogeneity by using a monoclonal antibody previously raised against a partially-purified preparation of the liver isoenzyme. Both purified isoenzymes had a specific activity in the range 1100-1400 mumol/min per mg of protein with a subunit Mr of 80,000 determined by SDS/polyacrylamide gel electrophoresis. Butanol extraction instead of detergent solubilization, before immunoaffinity purification of the liver enzyme, resulted in the same specific activity and subunit Mr. The native Mr of the sulphobetaine 14-solubilized enzyme was consistent with the enzyme being a dimer of two identical subunits and was higher than that of the butanol-extracted enzyme, presumably due to the binding of the detergent micelle. 2. Pure bone and liver alkaline phosphatase were used to raise further antibodies to the two isoenzymes. Altogether, 27 antibody-producing cell lines were cloned from 12 mice. Several of these antibodies showed a greater than 2-fold preference for bone alkaline phosphatase in the binding assay used for screening. No antibodies showing a preference for liver alkaline phosphatase were successfully cloned. None of the antibodies showed significant cross-reaction with placental or intestinal alkaline phosphatase. Epitope analysis of the 27 antibodies using liver alkaline phosphatase as antigen gave rise to six groupings, with four antibodies unclassified. The six major epitope groups were also observed using bone alkaline phosphatase as antigen. 3. Serum from patients with cholestasis contains soluble and particulate forms of alkaline phosphatase. The soluble serum enzyme had the same size and charge as butanol-extracted liver enzyme on native polyacrylamide-gel electrophoresis. Cellulose acetate electrophoresis separated the soluble and particulate serum alkaline phosphatases as slow- and fast-moving forms respectively. In the presence of sulphobetaine 14 all the serum enzyme migrated as the slow-moving form on cellulose acetate electrophoresis. Monoclonal anti-(alkaline phosphatase) immunoadsorbents did not bind the particulate form of alkaline phosphatase in cholestatic serum but bound the soluble form. In the presence of sulphobetaine 14 all the cholestatic serum alkaline phosphatase bound to the immunoadsorbents. 4. The electrophoretic and immunological data are consistent with both particulate and soluble forms of alkaline phosphatase in cholestatic serum being derived from the hepatocyte membrane.  相似文献   

5.
Alkaline phosphatase of the Greenland seal was purified to homogeneity, using immobilized concanavalin A. The specific activity of the enzyme is 1200-1500 mu/mg protein. The molecular mass of alkaline phosphatase as determined by electrophoresis performed under non-denaturating conditions is 260 kD, whereas that determined in the presence of beta-mercaptoethanol and SDS is 70 kD, which points to the tetrameric type of the seal alkaline phosphatase molecule. Using the atomic adsorption method, it was demonstrated that the phosphatase molecule contains four zinc atoms. Some physico-chemical parameters of seal alkaline phosphatase (pH-dependence, effects of temperature and cations on the enzyme activity, pI, thermal stability) were determined.  相似文献   

6.
7.
Enzymes are often immobilized on the internal surfaces of porous solid by immersing enzyme-free particles in a well mixed solution of enzyme. The ensuing impregnation process involves coupled transient mass transfer and surface attachment of enzyme. A mathematical model is employed to explore the influences of process parameters on the amount of enzyme loaded and the distribution of immobilized enzyme within the support particles. Nonuniform loading of the support occurs under some conditions. This is significant since the distribution of enzyme within the support particle influences the overall activity and stability of the immobilized enzyme catalyst. The model developed here may also be used to describe removal of reversibly immobilized enzyme during washing or utilization of the immobilized enzyme catalyst.  相似文献   

8.
beta-D-Glucuronidase (EC 3.2.1.31) was purified to homogeneity from human spleen, and enzyme fractions from CM-Sephadex were examined for uptake by fibroblasts and retention by a column of immobilized phosphomannosyl receptor. Uptake and binding were enhanced by treatment of the enzyme with alpha-N-acetylglucosaminyl phosphodiesterase, greatly reduced by prior treatment with alkaline phosphatase, and restored by subsequent treatment with alpha-N-acetylglucosaminyl phosphodiesterase. Immobilized phosphomannosyl receptor was used to separate high and low uptake enzyme forms. About 25% of the total beta-glucuronidase was retained by the receptor column and eluted with mannose 6-phosphate. The rate of uptake of retained enzyme was 2.5-3.0-fold greater than that of the enzyme applied to the receptor column. The fraction retained by the column was reduced to 5-10% by prior treatment of the enzyme with alkaline phosphatase. This phosphatase-resistant, receptor-retained fraction was taken up at only 24% the rate of non-phosphatase-treated, receptor-retained enzyme. However, its uptake was increased 7-fold by treatment with alpha-N-acetylglucosaminyl phosphodiesterase. The enhanced rate of pinocytosis conferred by treatment of the enzyme with alpha-N-acetylglucosaminyl phosphodiesterase was destroyed by a subsequent treatment with alkaline phosphatase. These studies demonstrate that although most of the "high uptake" enzyme in beta-glucuronidase from human spleen binds to receptors through phosphomonoesters of mannose, a significant fraction can interact with immobilized phosphomannosyl receptor and be taken up by fibroblasts through interactions involving mannose 6-phosphate in diester linkage with N-acetyl-D-glucosamine.  相似文献   

9.
Preparations of alkaline phosphatase from E. coli, immobilized on Sepharose, with a specific activity of 40-60 U/g wet weight were obtained. The immobilized enzyme was stable up to 50 degrees C; at higher temperatures it was inactivated. At 70 degrees most of the activity was lost for 1 h. The substrate (AMP) stabilized the enzyme. In the temperature range from 30 to 40 degrees C activation of the enzyme was observed, especially pronounced in the presence of the substrate. The pH optimum of the immobilized enzyme activity (7.8-8.2) is shifted towards the acid region, as compared to the soluble enzyme (8.0-8.6). The kinetic parameters for inhibition by the reaction product were determined using the integral Michaelis-Menten equation. KmAMP was found to be higher in case of the immobilized enzyme as compared to the soluble one (5.02 X 10(-4) M and 1.85 X 10(-5) M, respectively), which seems to be associated with diffusion limitations.  相似文献   

10.
Bovine liver catalase was immobilized on different supports. The tetrameric nature of this enzyme was found to cause its rapid inactivation in diluted conditions due to subunit dissociation, a fact that may rule out its industrial use. Multi-subunit immobilization using highly activated glyoxyl agarose was not enough to involve all enzyme subunits. In fact, washing the derivative produced a strong decrease in the enzyme activity. Further cross-linking of previously immobilized enzyme with tailor-made dextran-aldehyde permitted the multimeric structure to be fully stabilized using either multisubunit preparations immobilized onto highly activated glyoxyl-agarose support or one subunit enzymes immobilized onto poorly activated glyoxyl-agarose. The highest stability of the final biocatalyst was observed using the multisubunit immobilized derivative cross-linked with dextran-aldehyde. The optimal derivative retained around 60% of the immobilized activity, did not release any enzyme subunits after boiling in the presence of SDS, and did not lose activity during washing, and its stability did not depend on the dilution. This derivative was used for 10 cycles in the destruction of 10 mM hydrogen peroxide without any decrease in the enzyme activity.  相似文献   

11.
Thermophilic catechol 2,3-dioxygenase (EC 1.13.11.2) from Bacillus stearothermophilus has been immobilized on highly activated glyoxyl agarose beads. The enzyme could be fully immobilized at 4 degrees C and pH 10.05 with a high retention of activity (around 80%). Enzyme immobilized under these conditions showed little increase in thermostability compared with the soluble enzyme, but further incubation of immobilized enzyme at 25 degrees C and pH 10.05 for 3 h before borohydride reduction resulted in conjugates exhibiting a 100-fold increase in stability (c.f. the free enzyme). The stability of catechol 2,3-dioxygenase immobilized under these conditions was essentially independent of protein concentration whereas free enzyme was rapidly inactivated at low protein concentrations. An apparent stabilization factor of over 700-fold was recorded in the comparison of free and immobilized catechol 2,3-dioxygenases at protein concentrations of 10 μg/ml. Immobilization increased the 'optimum temperature' for activity by 20 degrees C, retained activity at substrate concentrations where the soluble enzyme was fully inactivated and enhanced the resistance to inactivation during catalysis. These results suggest that the immobilization of the enzyme under controlled conditions with the generation of multiple covalent links between the enzyme and matrix both stabilized the quaternary structure of the protein and increased the rigidity of the subunit structures.  相似文献   

12.
1. Alkaline phosphatase is covalently bound to bovine mammary microsomal membranes and milk fat globule membranes through linkage to phosphatidylinositol as demonstrated by the release of alkaline phosphatase following treatment with phosphatidylinositol-specific phospholipase C. 2. The release of alkaline phosphatase from the pellet to the supernatant was demonstrated by enzyme assays and electrophoresis. 3. Electrophoresis of the solubilized enzymes showed that the alkaline phosphatase of the microsomal membranes contained several isozymes, while only one band with alkaline phosphatase activity was seen in the fat globule membrane. 4. Levamisole and homoarginine were potent inhibitors of the alkaline phosphatase activities in both membrane preparations and in bovine liver alkaline phosphatase, but not in calf intestinal alkaline phosphatase.  相似文献   

13.
Vegetative cells of the yeast Saccharomyces cerevisiae 4011 efficiently sporulated at pH 7.7–8.0 in the presence of 1.0–3.0% of potassium acetate. Spores were prepared by lysing them with a lytic enzyme, zymolyase. Alkaline phosphatase (an enzyme selected as a model) in spores exhibited higher stability toward heat and pH than it did in vegetative cells, and was immobilized in a polyacrylamide gel lattice without any appreciable loss of activity. The activity of alkaline phosphatase in spores and immobilized spores was stably maintained during repeated use for the enzyme reactions. These results indicated the usefulness of yeast spores as a biocatalyst.  相似文献   

14.
Purification and characterization of phytase from rat intestinal mucosa.   总被引:1,自引:0,他引:1  
Phytase (myo-inositol hexakisphosphate phosphohydrolase; EC 3.1.3.8 or 3.1.3.26) was purified from rat intestinal mucosa. The purified enzyme preparation exhibited two protein bands on SDS-polyacrylamide gel electrophoresis with estimated molecular masses of 70 kDa and 90 kDa. Rabbit antisera prepared against the 90K subunit cross-reacted with the 70K subunit on immunoblotting. The peptide maps of the 70K and 90K subunits were similar, and the N-terminal amino acid sequences of the two subunit proteins were almost identical. Treatments to remove sugar moieties from the proteins showed that the two subunit proteins had different oligosaccharide chains, although the difference in their molecular masses was not due to the difference in their oligosaccharide compositions. The purified enzyme also showed activity of alkaline phosphatase (orthophosphoric monoester phosphohydrolase; EC 3.1.3.1), but the properties of the two enzyme activities were different; the optimum pH for phytase activity was 7.5, while that for alkaline phosphatase was 10.4. Phytase activity did not necessarily require divalent cations, while Mg2+ was essential for alkaline phosphatase activity. Phenylalanine, a specific inhibitor of intestine-type alkaline phosphatase had no effect on the phytase activity.  相似文献   

15.
Cholesterol 7 alpha-hydroxylase activity was completely inhibited by incubation with alkaline phosphatase in a reconstituted enzyme system containing a cytochrome P-450, NADPH-cytochrome P-450 reductase and phospholipid. On the other hand, cAMP-dependent protein kinase stimulated cholesterol 7 alpha-hydroxylase activity by 2.5-fold. The modulation of cholesterol 7 alpha-hydroxylase activity was dependent on the amount of phosphatase or kinase added. The phosphatase inhibited enzyme activity was partially reversed by the treatment with protein kinase. These experiments indicate that the reconstituted cholesterol 7 alpha-hydroxylase activity is reversibly regulated by phosphorylation/dephosphorylation mechanism.  相似文献   

16.
BackgroundTagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.MethodsThe catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.ResultsWe demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.ConclusionsWe reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.General significanceOverall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.  相似文献   

17.
On the basis of its distribution pattern in embryos of the axolotl (Ambystoma mexicanum), we recently identified alkaline phosphatase as a molecule potentially involved in guiding the migration of the pronephric duct. Alkaline phosphatase is a cell surface protein anchored to cell membranes via a covalent linkage to a phosphatidylinositol glycan (PI-G). The enzyme phosphatidylinositol-specific phospholipase C (PIPLC) specifically releases from cell surfaces molecules anchored by the PI-G linkage. In order to test the possibility that a PI-G anchored protein is involved in directing pronephric duct cell migration, PIPLC was applied to axolotl embryos. The enzyme was introduced into embryos through the use of a novel slow-release bead material, hydrolysed polyacrylamide. PIPLC blocked pronephric duct cell migration without interfering with somite fissure formation, a concurrent, neighbouring morphogenetic cell rearrangement which occurs with little if any alkaline phosphatase present. In addition, alkaline phosphatase activity was markedly diminished in the vicinity of the implanted beads. These observations suggest that at least one protein anchored to the cell membrane by a PI-G linkage, possibly alkaline phosphatase, is involved in guiding or promoting pronephric duct cell migration.  相似文献   

18.
The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line.  相似文献   

19.
The gene encoding Thermus caldophilus GK24 (Tca) alkaline phosphatase was cloned into Escherichia coli. The primary structure of Tca alkaline phosphatase was deduced from its nucleotide sequence. The Tca alkaline phosphatase precursor, including the signal peptide sequence, was comprised of 501 amino acid residues. Its molecular mass was determined to be 54? omitted?760 Da. On the alignment of the amino acid sequence, Tca alkaline phosphatase showed sequence homology with the microbial alkaline phosphatases, 20% identity with E. coli alkaline phosphatase and 22% Bacillus subtilis (Bsu) alkaline phosphatases. High sequence identity was observed in the regions containing the Ser-102 residue of the active site, the zinc and magnesium binding sites of E. coli alkaline phosphatase. Comparison of Tca alkaline phosphatase and E. coli alkaline phosphatase structures suggests that the reduced activity of the Tca alkaline phosphatase, in the presence of zinc, is directly involved in some of the different metal binding sites. Heat-stable Tca alkaline phosphatase activity was detected in E. coli YK537, harboring pJRAP.  相似文献   

20.
Collagen-alkaline phosphatase membranes have been prepared, and their enzymatic kinetics and in-vitro stability analyzed. Collagen-alkaline phosphatase dispersions were prepared by complexation in aqueous alkaline solution and cast into membranes by controlled dehydration. These membranes were then crosslinked in glutaraldehyde solution, washed thoroughly, and dried. Crosslinking in glutaraldehyde confers increased stability of catalytic activity to these collagen-enzyme membranes, especially when compared to uncrosslinked collagen-alkaline phosphatase membranes assayed in a similar fashion. Crosslinking in glutaraldehyde also appears to inhibit gross leaching of the soluble enzyme from the carrier matrix. Apparent intrinsic kinetic properties of the collagen-alkaline phosphatase conjugate were analyzed in membranes of various thickness in order to determine the effect of internal diffusion resistances on the kinetics of the immobilized enzyme. The apparent Michaelis constant of the immobilized enzyme decreased as a function of decreasing membrane thickness, reaching an observed apparent Michaelis constant of 1.6mM at a membrane thickness of 0.2 mm. Extrapolation of the apparent Michaelis constant to zero membrane thickness, using a linear plot of the natural logarithm of the apparent Michaelis constant versus membrane thickness, allowed estimation of the true Michaelis constant of the immobilized enzyme. The estimated value for the true Michaelis constant of the collagen-alkaline phosphatase complex was 0.7mM. This value agrees closely with reported values for several purified mammalian alkaline phosphatase. The apparent Michaelis constant for the 0.2mm collagen-enzyme membrane agrees closely with the Michaelis constant reported for an alkaline phosphate purified from chondrocyte matrix vesicles. The intrinsic maximum reaction velocity (V(m)) of the collagen-enzyme complex was estimated b plotting the observed reaction rate as a function of decreasing membrane thickness and extrapolating such plots, at various substrate concentrations, to the limiting case of zero membrane thickness. The maximum reaction velocity was obtained by the common intercept of these plots as they approached zero membrane thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号