首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m?2 day?1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m?2 day?1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m?2 day?1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.  相似文献   

2.
1. Density, biomass, production and growth of a predaceous stonefly, Acroneuria lycorias, were compared between fourth-order hard- and soft-water streams in Michigan's upper peninsula, U.S.A. 2. Mean densities, estimated from Hess samples, were higher (100 ± 17 individuals m?2) at the hard-water site than at the soft-water site (40 ± 9 ind. m?2). Mean dry weight biomass was 4.9 times greater at the hard-water site. 3. Mean annual production, calculated using the size frequency method, was 5.0 times greater at the hard-water site (2.18 ± 0.44 g dry weight m?2yr?1) than at the soft-water site (0.43 ± 0.02g dry weight m?2yr?1). Annual production/mean biomass ratios were similar between sites. 4. Monthly growth rates of naturally occurring nymphs of paired cohorts were similar in both streams. Individual growth rates were similar for nymphs reared in artificial streams at high and low water hardnesses with unlimited food and space. 5. Stonefly production and growth rates were influenced more by indirect physical, biological, or habitat factors than by streamwater cation concentrations.  相似文献   

3.
1. In extremely acid mining lakes, benthic filamentous green algae (Zygnemataceae, Chlorophyta) thrive as effective competitors for limited carbon (C). These algae could supply C for microbial‐mediated benthic alkalinity generation. However, biomass, productivity and impact of the acidobiontic filamentous green algae at pH ≤3 have not previously been determined. 2. Periphytic filamentous green algae was mapped by harvesting their biomass from 85 1 × 1 m quadrats in mining lake Grünewalder Lauch. Zygogonium ericetorum colonised water depths between 1.6 and 10.5 m covering 88% of total area. Biomass peaked at 5–6 m depth. Total Zygogonium biomass amounted to 72.2 t dry weight for the whole lake (0.94 km2), which corresponds to 16.1 t C and the accumulation of primary production from 2.2 years. 3. Growth of Zygogonium is moderately N, C and extremely P deficient, and seriously stressed by high rates of Fe deposition during summer. Consequently, net primary production (NPP) of Zygogonium, calculated from measured photosynthesis versus irradiance characteristics and calculated underwater irradiance (0.13 g C m?2 year?1) and in situ oxygen measurements (7.8 g C m?2 year?1), corresponds to only 0.3% and 18.1% of pelagic NPP. 4. Neither pelagic nor benthic Zygogonium primary production can supply enough C for efficient acidity removal. However, at rates of benthic NPP in summer of 21.4 mg C m?2 day?1, Zygogonium contributed 26% of the C equivalents to remove acidity associated with ferric iron, contributing at least seasonally to efficient alkalinity generation.  相似文献   

4.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

5.
The biomass productivity of Scenedesmus obliquus was investigated outdoors during all seasons in solar tracked flat panel photobioreactors (PBR) to evaluate key parameters for process optimization. CO2 was supplied by flue gas from an attached combined block heat and power plant. Waste heat from the power plant was used to heat the culture during winter. The parameters pH, CO2, and inorganic salt concentrations were automatically adjusted to nonlimiting levels. The optimum biomass concentration increased directly with the photosynthetic active radiation (PAR) from 3 to 5 g dry weight (DW)?L?1 for a low PAR of 10 mol photons m?2 day?1 and high PAR of 40–60 mol photons m?2 day?1, respectively. The annual average biomass yield (photosynthetic efficiency) was 0.4?±?0.5 g DW mol?1 photons. However, biomass yields of 1.5 g DW mol?1 photons close to the theoretical maximum were obtained at low PAR. The productivity (including the night biomass losses) ranged during all seasons from ?5 up to 30 g DW m?2 day?1 with a mean productivity of 9?±?7 g DW m?2 day?1. Low night temperatures of the culture medium and elevated day temperatures to the species-specific optimum increased the productivity. Thus, continuous regulation of the biomass concentration and the culture temperature with regard to the fluctuating weather conditions is essential for process optimization of outdoor microalgal production systems in temperate climates.  相似文献   

6.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

7.
Alpine meadow covers ca. 700,000 km2 with an extreme altitude range from 3200 m to 5200 m. It is the most widely distributed vegetation on the vast Qinghai-Tibetan Plateau. Previous studies suggest that meadow ecosystems play the most important role in both uptake and storage of carbon in the plateau. The ecosystem has been considered currently as an active “CO2 sink”, in which roots may contribute a very important part, because of the large root biomass, for storage and translocation of carbon to soil. To bridge the gap between the potential importance and few experimental data, root systems, root biomass, turnover rate, and net primary production were investigated in a Kobresia humilis meadow on the plateau during the growing season from May to September in 2008 and 2009. We hypothesized that BNPP/NPP of the alpine meadow would be more than 50%, and that small diameter roots sampled in ingrowth cores have a shorter lifespan than the lager diameter roots, moreover we expected that roots in surface soils would turn over more quickly than those in deeper soil layers. The mean root mass in the 0–20 cm soil layer, investigated by the sequential coring method, was 1995?±?479 g?m?2 and 1595?±?254 g?m?2 in growing season of 2008 and 2009, respectively. And the mean fine root biomass in ingrowth cores of the same soil layer was 119?±?37 g?m?2 and 196?±?45 g?m?2 in the 2 years. Annual total NPP was 12387 kg?ha?1?year?1, in which 53% was allocated to roots. In addition, fine roots accounted for 33% of belowground NPP and 18% of the total NPP, respectively. Root turnover rate was 0.52 year?1 for bulk roots and 0.74 year?1 for fine roots. Furthermore, roots turnover was faster in surface than in deeper soil layers. The results confirmed the important role of roots in carbon storage and turnover in the alpine meadow ecosystem. It also suggested the necessity of separating fine roots from the whole root system for a better understanding of root turnover rate and its response to environmental factors.  相似文献   

8.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   

9.
1. We estimated the biomass and production of juvenile anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) (parr) in 12 streams in the Skagerrak area of Norway to identify controlling environmental factors, such as land‐use and water chemistry. 2. Production estimates correlated positively with fish density in early summer, but not with the size of the catchment. The summer biomass of age‐0 brown trout and Atlantic salmon was smaller than that of age‐1 and constituted 27.4 and 25.7%, respectively, of the total biomass of the two groups. 3. Mean production of brown trout from July to September varied between streams, but in most cases it was below 2 g 100 m?2 day?1. Yearly cohort production from age‐0 in July to age‐1 in July was 10 g m?2 or less, with mean annual production of 1.32 g 100 m?2 day?1, equivalent to 4.8 g m?2 year?1. The corresponding annual cohort production of Atlantic salmon was 0.38 g 100 m?2 day?1 or 1.4 g m?2 year?1. Annual production to biomass ratio (P/B) for brown trout of the same cohort in the various streams was between 1.47 and 4.37; the overall mean (±SD) for all streams was 2.25 ± 0.94. Mean turnover rate of Atlantic salmon was 2.73 ± 0.24. 4. Production of 0+ brown trout during the summer correlated significantly with the percentage of agricultural land and forest/bogs in the catchment, with maxima at 20 and 75%, respectively. Age‐0 brown trout production also correlated with concentration of nitrogen and calcium in the water, with maxima at 2.4 and 14 mg L?1, respectively. 5. The results support the hypothesis that brown trout parr production reflects the quality of their habitat, as indicated by the dome‐shaped relationship between percentage of agricultural land and the concentration of nitrogen and calcium in the water.  相似文献   

10.
Ecological processing of leaf litter plays important roles in carbon dynamics of mangrove forests. Fate of leaf litter, that is, removal by crabs, microbial decomposition, and tidal export was quantified in two restored Kandelia obovata forests with ages of 24 years and 48 years, respectively, from December 2009 to November 2010. Crab abundance was also investigated to test the role of crabs in leaf litter processing. Daily leaf litter production was 1.064 ± 0.108 g C m?2 day?1 at the 24‐year forest and was 0.689 ± 0.040 g C m?2 day?1 at the 48‐year forest. Annual mean removal of leaf litter by crabs was lower at the 24‐year forest than at the 48‐year forest (0.177 ± 0.046 g C m?2 day?1 vs. 0.220 ± 0.050 g C m?2 day?1), due to a higher crab abundance at the older forest. Microbial decomposition and change in standing stock of leaf litter on the forest floor made a negligible contribution to the annual leaf litter production. Tidal exports of leaf litter were estimated as 0.875 ± 0.090 g C m?2 day?1 and 0.458 ± 0.086 g C m?2 day?1 at the 24‐year and 48‐year forests, respectively, accounting for 82.2% and 66.5% of their daily leaf litter production. Turnover rate of leaf litter was higher at the younger forest (1.7 ± 0.4 day?1) than the older forest (1.2 ± 0.3 day?1). Removal of leaf litter by crabs was higher in warm months while tidal export of leaf litter showed a much less apparent seasonal pattern. Spatial variations of crab removal and tidal export of leaf litter with forest zones were observed within each forest, while microbial decomposition of leaf litter was comparable among the different zones. These indicated that the ecosystem functions of restored mangrove forest could not reach a level equivalent to those of a mature forest even 24 years after restoration.  相似文献   

11.
We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy‐fraction organic carbon (HF‐OC) measured by the density fractionation technique, more efficiently than the tree plantation did. Although there was no significant difference in total soil organic carbon (SOC) between the plantation (5.59±0.09 kg m?2) and the secondary forest (5.68±0.16 kg m?2), the proportion of HF‐OC carbon to the total SOC was significantly higher in the secondary forest (61%) than in the plantation (45%) (P<0.05). Forest floor mass and aboveground litterfall in the plantation were 168% and 22.8% greater than those in the secondary forest, respectively, while the decomposition rate of leaf litter in the plantation was 23.3% lower than that in the secondary forest. The annual mean soil respirations in the plantation and the secondary forest were 2.32±0.15 and 2.65±0.18 g C m?2 day?1, respectively, with a consistently higher rate in the secondary forest than in the plantation throughout the year. Microbial biomass measured by fumigation–incubation method demonstrated a strong seasonal variation in the secondary forest with 804 mg kg?1 in the wet season and 460 mg kg?1 in the dry season. However, the seasonal change of microbial biomass in the plantation was less significant. Our results suggested that secondary forests could stock more long‐term SOC than the plantations in the wet tropics because the naturally generated secondary forest accumulated more HF‐OC than the managed plantation.  相似文献   

12.
Halimeda is a potential carbon sink species and an important player in the global carbonate budget. The objectives of this study were to: (i) examine the CaCO3 and sediment productions of H. macroloba by measuring the density, growth rate, and recruitment; (ii) quantify the numbers of aragonite crystals; (iii) document reproductive events; and (iv) determine the life‐span. This study was carried out at Lidee Lek Island, Satun, Thailand during July 2015 to April 2016. The density was measured using quadrats (0.25 m2) and three 50 m line transects. Alizarin Red‐S marking technique was used for the growth rate and CaCO3 accumulation rate assessments. The recruitment, reproduction and life‐span were measured by tagging 500 individuals. Tagged individuals and new plants were counted. In this study, mean and the highest density of Halimeda were 44.42 ± 13.95 and 138.22 ± 11.68 thalli m?2, respectively, and Halimeda produced 1–2 new segments.thallus?1 day?1 or 0.021 ± 0.001 g dry weight.thallus?1.day?1. The annual biomass production was 1910–5950 g m?2 year.?1. There was a low rate of occurrence of sexual reproduction, observed in late July to September, ranging from 0.17% to 1.92%. For the mortality and recruitment rates, approximately 70–80% of individuals were lost during July to September 2015, probably from sexual reproduction and the recruitment rate varied from 5.36 ± 0.79% to 21.03 ± 2.33%. The highest density of new recruits was found in September 2015 right after the sexual reproductive event occurred. New recruits have been found up to April 2016 without any reproductive events, suggesting that both sexual and asexual reproduction helped maintain the population. The life span of Halimeda was 8–12 months. In addition, Halimeda accumulated CaCO3 at approximately 0.018 g CaCO3 thallus?1 day?1 and produced CaCO3 at approximately 291.94–908.11 g m?2 year?1, indicating that Halimeda contributes to CaCO3 and helps to sink carbon through calcification. The results in terms of the density, growth rate, and CaCO3 accumulation rate can be used to calculate the mass of carbonate sediment contributed by Halimeda.  相似文献   

13.
Light source can affect the stomata opening, photosynthesis process, and pigment content in microalgae cells. In this study, growth rate, chlorophyll a (chl a) content, and electrogenic capability of Desmodesmus sp. A8 were investigated under incandescent and fluorescent lamps. Growth rate, productivity, and chl a content of strain A8 exposed to incandescent light were recorded as 0.092 ± 0.010 day?1, 0.019 ± 0.008 g L?1 day?1, and 15.10 ± 1.40 mg L?1, which decreased to 0.086 ± 0.006 day?1, 0.012 ± 0.004 g L?1 day?1, and 10.06 ± 1.59 mg L?1, respectively, under fluorescent light. The stable current density of bioelectrochemical systems inculcated with strain A8 under incandescent and fluorescent lamps were 249.76 and 158.41 mA m?2 at ?0.4 V vs. Ag/AgCl, coupling with dissolved oxygen within biofilm decreasing from 15.91 to 10.80 mg L?1. This work demonstrated that illuminating microalgae under an incandescent lamp can improve biomass production and electrogenic capabilities.  相似文献   

14.
1. The release of total phosphorus (TP) and nitrogen (N in ammonium) was measured for the five most abundant fish species (>85% of biomass) in Mouse and Ranger Lakes, two biomanipulated, oligotrophic lakes in Ontario. 2. The specific release rate of both nutrients was significantly related to fish mass; log10 TP release rate (μg h?1) = 0.793 (±0.109) [log10 wet mass (g)] + 0.7817 (±0.145), and log10 N release rate (μg h?1) = 0.6946 (±0.079) [log10wet mass (g)] + 1.7481 (±0.108). 3. When fish nutrient release was standardized for abundance (all populations, 1993–95) and epilimnetic volume, fish were estimated to contribute 0.083 (±0.061) μg TP L?1 day?1, and 0.41 (±0.17) μg N L?1 day?1 in Mouse L., and 0.062 (±0.020) μg TP L?1 day?1 and 0.31 (±0.08) μg N L?1 day?1 in Ranger L. 4. In comparison, concurrent rates of total planktonic P regeneration were 1.02 (±0.45) μg L?1 day?1 (Mouse L.) and 0.85 (±0.19) μg L?1 day?1 (Ranger L.). Fish represented 8% of planktonic P release in Mouse L. and 7% in Ranger L. 5. Fish dry mass had mean elemental body compositions of 39.3% carbon, 10.9% nitrogen, and 4.0% phosphorus (all fish combined), with a mean molar C : N : P ratio of 27 : 6 : 1. This comprised about 55% and 23% of the total epilimnetic particulate P and N respectively. 6. Turnover times of P and N in fish were approximately 103 and 48 days respectively. In comparison, planktonic turnover times of particulate P in Mouse and Ranger Lakes were 4.3 and 4.4 days respectively. Given their high P content and low turnover rates, fish appear to be important P sinks in lakes.  相似文献   

15.
The biomass, productivity (14C), and photosynthetic response to light and temperature of eelgrass, Zostera marina L. and its epiphytes was measured in a shallow estuarine system near Beaufort, North Carolina, during 1974. The maximum of the biomass (above-ground) was measured in March; this was followed by a general decline throughout the rest of the year. The average biomass was 105.0 g dry wt m?2; 80.3 g dry wt m?2 was eelgrass and 24.7 g dry wt m?2 was epiphytes. The productivity of eelgrass averaged 0.88 mg C g?1 h?1 which was similar to that of the epiphytes, 0.65 mg C g?1 h?1. Eelgrass and epiphyte productivity was low during the spring and early summer, gave a maximum during late summer and fall, and declined during the winter; this progression was probably due to environmental factors associated with tidal heights. On an areal basis, the average annual productivity was 0.9 g C m?2 day?1 for eelgrass and 0.2 g C m?2 day?1 for the epiphytes. Rates of photosynthesis of both eelgrass and epiphytes increased with increasing temperature to an asymptotic value at which the system was light saturated. Both eelgrass and epiphytes had a temperature optimum of < 29 °C. A negative response to higher temperatures was also reflected in biomass measurements which showed the destruction of eelgrass with increasing summer temperatures. The data suggest that the primary productivity cycles of macrophytes and epiphytes are closely interrelated.  相似文献   

16.
1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

17.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

18.
《Biomass》1990,21(2):145-156
Duckweed, Lemna gibba, was grown in 12 m2 shallow ponds in the Negev desert, during 12 months of continuous cultivation, beginning April 1984. Average monthly growth rates varied with the season of the year. The lowest daily yield, 2·6±0·4 g dry weight m−2 day−1, was obtained during January. Highest daily yields, 7·9±2·6 g dry weight m−2 day−1 and 7·0±1·2 g dry weight m−2 day−1, were obtained during September and May. A 35% decline of the yield was seen during midsummer (July), 4·8±1·2 g dry weight m−2 day−1. The average rate for the year was 5·15±1·7 g dry weight m−2 day−1. The protein content of the plants ranged from 30 to 38% per unit dry weight.Growth performance is discussed in relation to the prevailing climatic conditions.  相似文献   

19.
20.
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr?1 (352 g C m?2 yr?1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr?1 (31 g C m?2 yr?1). Harvesting transferred 45 ± 4 Tg C yr?1 out of the ecosystem and 45 ± 4 Tg C yr?1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr?1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr?1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr?1 (1 g C m?2 yr?1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr?1 [net ecosystem exchange (NEE) of CO2=?22 g C m?2 yr?1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号