首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Analysis of ITS 1 and ITS 2 sequences in the pearl oysters Pinctada albina, Pinctada chemnitzi, Pinctada fucata, Pinctada fucata martensii, Pinctada imbricata, Pinctada margaritifera, Pinctada maxima, Pinctada nigra and Pinctada radiata was carried out. Homogeneity test of substitution patterns suggests that GC contents are highest in P. margaritifera and P. maxima and chromosomal rearrangements occurred in P. chemnitzi. These observations indicate that P. margaritifera and P. maxima are primitive species and P. chemnitzi is a recent species. Phylogenetic analysis shows that the pearl oysters studied constitute three clades with P. margaritifera and P. maxima forming the basal clade, congruent with results revealed by the substitution pattern test. The second clade consists of P. fucata, P. fucata martensii and P. imbricata. Low genetic distances among these taxa indicate that they may be conspecific. The remaining species make up the third clade and low genetic divergence between P. albina and P. nigra suggests that they may represent the same species. The ITS 1 sequence of P. radiata in GenBank is almost identical to that of P. chemnitzi determined in the present study and we suspect that the specimen used for the P. radiata sequence was misidentified.  相似文献   

2.
J. Guenther  R. De Nys 《Biofouling》2013,29(3):151-159
Abstract

A field experiment documented the development of fouling communities on two shell regions, the lip and hinge, of the pearl oyster species Pinctada fucata, Pteria penguin and Pteria chinensis. Fouling communities on the three species were not distinct throughout the experiment. However, when each species was analysed separately, fouling communities on the lip and hinge of P. penguin and P. chinensis were significantly different during the whole sampling period and after 12 weeks, respectively, whereas no significant differences could be detected for P. fucata. There was no significant difference in total fouling cover between shell regions of P. fucata and P. chinensis after 16 weeks; however, the hinge of P. penguin was significantly more fouled than the lip. The most common fouling species (the hydroid Obelia bidentata, the bryozoan Parasmittina parsevalii, the bivalve Saccostrea glomerata and the ascidian Didemnum sp.) showed species-specific fouling patterns with differential fouling between shell regions for each species. The role of the periostracum in determining the community development of fouling species was investigated by measuring the presence and structure of the periostracum at the lip and hinge of the three pearl oyster species. The periostracum was mainly present at the lip of the pearl oysters, while the periostracum at the hinge was absent and the underlying prismatic layer eroded. The periostracum of P. fucata lacked regular features, whereas the periostracum of P. penguin and P. chinensis consisted of a regular strand-like structure with mean amplitudes of 0.84 μm and 0.65 μm, respectively. Although the nature and distribution of fouling species on the pearl oysters was related to the presence of the periostracum, the periostracum does not offer a fouling-resistant surface for these pearl oyster species.  相似文献   

3.
Aspein is one of the unusually acidic shell matrix proteins originally identified from the pearl oyster Pinctada fucata. Aspein is thought to play important roles in the shell formation, especially in calcite precipitation in the prismatic layer. In this study, we identified Aspein homologs from three closely related pterioid species: Pinctada maxima, Isognomon perna, and Pteria penguin. Our immunoassays showed that they are present in the calcitic prismatic layer but not in the aragonitic nacreous layer of the shells. Sequence comparison showed that the Ser-Glu-Pro and the Asp-Ala repeat motifs are conserved among these Aspein homologs, indicating that they are functionally important. All Aspein homologs examined share the Asp-rich D-domain, suggesting that this domain might have a very important function in calcium carbonate formation. However, sequence analyses showed a significantly high level of variation in the arrangement of Asp in the D-domain even among very closely related species. This observation suggests that specific arrangements of Asp are not required for the functions of the D-domain.  相似文献   

4.
Various novel proteins have been identified from many kinds of mollusk shells. Although such matrix proteins are believed to play important roles in the calcium carbonate crystal formation of shells, no common proteins that interact with calcium carbonate or that are involved in the molecular mechanisms behind shell formation have been identified. Pif consists of two proteins, Pif 80 and Pif 97, which are encoded by a single mRNA. Pif 80 was identified as a key acidic protein that regulates the formation of the nacreous layer in Pinctada fucata, while Pif 97 has von Willebrand factor type A (VWA) and chitin-binding domains. In this study, we identified Pif homologues from Pinctada margaritifera, Pinctada maxima, Pteria penguin, Mytilus galloprovincialis, and in the genome database of Lottia gigantea in order to compare their primary protein sequences. The VWA and chitin-binding domains are conserved in all Pif 97 homologues, whereas the amino acid sequences of the Pif 80 regions differ markedly among the species. Sequence alignment revealed the presence of a novel significantly conserved sequence between the chitin-binding domain and the C-terminus of Pif 97. Further examination of the Pif 80 regions suggested that they share a sequence that is similar to the laminin G domain. These results indicate that all Pif molecules in bivalves and gastropods may be derived from a common ancestral gene. These comparisons may shed light on the correlation between molecular evolution and morphology in mollusk shell microstructure.  相似文献   

5.
We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry.  相似文献   

6.
Pearl oysters are not only farmed for their gemstone quality pearls worldwide, but they are also becoming important model organisms for investigating genetic mechanisms of biomineralisation. Despite their economic and scientific significance, limited genomic resources are available for this important group of bivalves, hampering investigations into identifying genes that regulate important pearl quality traits and unique biological characteristics (i.e. biomineralisation). The silver-lipped pearl oyster, Pinctada maxima, is one species where there is interest in understanding genes that regulate commercially important pearl traits, but presently, there is a dearth of genomic information. The objective of this study was to develop and validate a large number of type I genome-wide single nucleotide polymorphisms (SNPs) for P. maxima suitable for high-throughput genotyping. In addition, sequence annotations and Gene Ontology terms were assigned to a large mantle tissue 454 expressed sequence tag assembly (96,794 contigs) and information on known bivalve biomineralisation genes was incorporated into SNP discovery. The SNP discovery effort resulted in the de novo identification of 172,625 SNPs, of which 9,108 were identified as high value [minor allele frequency (MAF)?≥?0.15, read depth?≥?8]. Validation of 2,782 of these SNPs using Illumina iSelect Infinium genotyping technology returned some of the highest assay conversion (86.6 %) and validation (59.9 %; mean MAF 0.28) rates observed in aquaculture species to date. Genomic resources presented here will be pivotal to future research investigating the biological mechanisms behind biomineralisation and will form a strong foundation for genetic selective breeding programs in the P. maxima pearling industry.  相似文献   

7.
8.
9.
Pearl oysters belonging to the genus Pinctada (Bivalvia: Pteriidae) are widely distributed between the Indo-Pacific and western Atlantic. The existence of both widely distributed and more restricted species makes this group a suitable model to study diversification patterns and prevailing modes of speciation. Phylogenies of eight out of the 11 currently recognised Pinctada species using mitochondrial (cox1) and nuclear (18S rRNA) data yielded two monophyletic groups that correspond to shell size and presence/absence of hinge teeth. Character trace of these morphological characters onto the molecular phylogeny revealed a strong correlation. Pinctada margaritifera appears polyphyletic with specimens from Mauritius grouping in a different clade from others of the French Polynesia and Japan. Hence, P. margaritifera might represent a species complex, and specimens from Mauritius could represent a different species. Regarding the putative species complex Pinctada fucata/Pinctada martensii/Pinctada radiata/Pinctada imbricata, our molecular analyses question the taxonomic validity of the morphological characters used to discriminate P. fucata and P. martensii that exhibited the lowest genetic divergence and are most likely conspecific as they clustered together. P. radiata and P. imbricata were recovered as monophyletic. The absence of overlapping distributions between sister lineages and the observed isolation by distance suggests that allopatry is the prevailing speciation mode in Pinctada. Bayesian dating analysis indicated a Miocene origin for the genus, which is consistent with the fossil record. The northward movement of the Australian plate throughout the Miocene played an important role in the diversification process within Pinctada.  相似文献   

10.
Shells in pearl oysters are produced by the mantle which is also used as a graft in pearl operations. Here, we investigate the mantle structure of a new pearl oyster species of the Persian Gulf, Pinctada persica, and compare it to two other pearl-producing species, Pinctada radiata and Pteria penguin. The anterior, ventral and posterior segments of the mantle edge of each valve were fixed, and tissue sections were stained with haematoxylin and eosin. A new pentachrome method and PAS-alcian blue staining were used to characterise the different mucosubstances. The mantle edges were found to have an outer, middle and inner fold, which have different morphology in each species. The mantle edge is lined by cuboidal and columnar epithelia, and interspersed among these epithelial cells we found mucous cells and cells that contained brown granules. The outer and middle folds of the two Pinctada species show different shapes to that of Pteria penguin. Most of the mucous cells in the mantle contain acidic mucosubstances and small amounts of mixed acidic-neutral mucosubstances were observed in the middle and inner fold of Pinctada persica. This study reveals that the mantle edges of the three species possess similar cellular structure, but vary in the shape of the folds.  相似文献   

11.
The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS).  相似文献   

12.
13.
The objective of this study was to detect interspecific and intraspecific genetic variations of the second internal transcribed spacer of ribosomal DNA (ITS-2), and explore the feasibility of using it as a molecular marker phylogenetic analyses and species identification among pearl oysters. ITS-2 sequences of 6 pearl oysters were amplified via polymerase chain reaction. The amplified DNA fragments were about 500 bp, spanning the partial sequences of 5.8S and 28S rRNA genes. The GC contents of all species used in this study were higher than the AT contents. The variations of sequences involved substitutions as well as insertions/deletions and were mainly concentrated in spacer regions. Sequences of about 30-bp in spacer regions showed no variations among 5 Pincatda species. Intraindividual and intraspecific polymorphisms of ITS-2 sequences were detected in some species; the interspecific variability was significantly larger than the variability within species, and the variability at the genus level was higher than that at the species level. Both neighbor-joining and parsimony analyses of ITS-2 sequences revealed the distinguishable species boundary of 6 pearl oysters, and indicated that P. chemnitzi and P. nigra were the closely related species, as were P. maxima and P. margaritifera. The findings revealed that ITS-2 sequences could be an appropriate tool for phylogenetic study of pearl oysters.  相似文献   

14.
Marine organisms with long pelagic larval stages are expected to exhibit low genetic differentiation due to their potential to disperse over large distances. Growing body of evidence, however, suggests that marine populations can differentiate over small spatial scales. Here we focused on black-lip pearl oysters from the Persian Gulf that are thought to belong to the Pinctada margaritifera complex given their morphological affinities. This species complex includes seven lineages that show a wide distribution ranging from the Persian Gulf (Pinctada margaritifera persica) and Indian Ocean (P. m. zanzibarensis) to the French Polynesia (P. m. cumingii) and Hawai’i (P. m. galtsoffi). Despite the long pelagic larval phase of P. m. persica, this lineage is absent from continental locations and can only be found on a few islands of the Persian Gulf. Mitochondrial COI-based analyses indicated that P. m. persica belongs to a clearly divergent ESU and groups with specimens from Mauritius (P. m. zanzibarensis). Microsatellite data, used here to assess the spatial scale of realized dispersal of Persian Gulf black-lip pearl oysters, revealed significant genetic structure among islands distant of only a few dozen kilometres. The scantiness of suitable habitats most likely restricted the distribution of this lineage originating the observed chaotic genetic patchiness. The hatchery-based enhancement performed in one of the sampled islands may also have affected population genetic structure. The long-term accumulation of genetic differences likely resulted from the allopatric divergence between P. m. persica and the neighbouring Indian Ocean black-lip pearl oysters.  相似文献   

15.
16.
Nucleated pearls are produced by molluscs of the Pinctada genus through the biomineralisation activity of the pearl sac tissue within the recipient oyster. The pearl sac originates from graft tissue taken from the donor oyster mantle and its functioning is crucial in determining key factors that impact pearl quality surface characteristics. The specific role of related gene regulation during gem biogenesis was unknown, so we analysed the expression profiles of eight genes encoding nacreous (PIF, MSI60, PERL1) or prismatic (SHEM5, PRISM, ASP, SHEM9) shell matrix proteins or both (CALC1) in the pearl sac (N?=?211) of Pinctada margaritifera during pearl biogenesis. The pearls and pearl sacs analysed were from a uniform experimental graft with sequential harvests at 3, 6 and 9 months post-grafting. Quality traits of the corresponding pearls were recorded: surface defects, surface deposits and overall quality grade. Results showed that (1) the first 3 months of culture seem crucial for pearl quality surface determination and (2) all the genes (SHEM5, PRISM, ASP, SHEM9) encoding proteins related to calcite layer formation were over-expressed in the pearl sacs that produced low pearl surface quality. Multivariate regression tree building clearly identified three genes implicated in pearl surface quality, SHEM9, ASP and PIF. SHEM9 and ASP were clearly implicated in low pearl quality, whereas PIF was implicated in high quality. Results could be used as biomarkers for genetic improvement of P. margaritifera pearl quality and constitute a novel perspective to understanding the molecular mechanism of pearl formation.  相似文献   

17.
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.  相似文献   

18.
Color is one of the most important factors determining the commercial value of pearls. Pinctada fucata is a well-known pearl oyster producing high-quality Akoya pearls. Phenotypic variation in amount of yellow pigmentation produces white and yellowish pearls. It has been reported that polymorphism of yellow pigmentation of Akoya pearls is genetically regulated, but the responsible gene(s) has remained unknown. Here, we prepared pearl sac pairs formed in the same recipient oyster but coming from donor oysters that differ in their color. These two pearl sacs produced pearls with different yellowness even in the same recipient oyster. Yellow tone of produced pearls was consistent with shell nacre color of donor oysters from which mantle grafts were prepared, indicating that donor oysters strongly contribute to the yellow coloration of Akoya pearls. We also conducted comparative RNA-seq analysis and retrieved several candidate genes involved in the pearl coloration. Whole gene expression patterns of pair sacs were not grouped by pearl color they produced, but grouped by recipient oysters in which they were grown, suggesting that the number of genes involved in the yellow coloration is quite small, and that recipient oyster affects gene expression of the majority of genes in the pearl sac.  相似文献   

19.
20.
Results are presented from a three-year investigation of the relationship between accumulations of marine fouling organisms and growth of the pearl oyster Pinctada fucata (Gould). Estimates are provided of the diversity of the foulers, and data on certain hydrological features of the experimental site are also given.There was an inverse correlation between growth of the pearl oyster and diversity of the biofouling assemblages, whatever depth. Growth curves did not follow seasonal variations in the environmental factors very exactly. It was also observed that the polychaete, Polydora vulgaris Mohammad, preferred the oysters planted on the bottom to those suspended near the surface. Bottom oysters suffered the highest mortality, but definite evidence of a relationship between mortality and infestation by the polychaete was not apparent. Percentages of both infestation and mortality were higher among the fouled oysters than those cleaned periodically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号