首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The content of lysophosphatidylethanolamine (LPE) in Y. pseudotuberculosis cells was found to increase during their growth at 8 degrees C under stationary conditions (without stirring the medium) and at 37 degrees C when the medium contained glucose. The maximum level of LPE (up to 45% of the total phospholipids) was observed in cells grown at 8 degrees C under stationary conditions. Such cells showed an enhanced growth rate, a reduced yield of biomass, an altered cell morphology, and an increased cell area. The cells contained unsaturated fatty acids, phosphatidylethanolamine (PE), and total phospholipids in small amounts, whereas neutral lipids and diphosphatidylglycerol were abundant. In addition, the cells contained an amount of methylated PE and phospholipids of unknown structure. Irrespective of whether the temperature for growth was low or high, the LPE-rich cells showed a high value (32-36 degrees C) of the maximum temperature of thermal transition of lipids (Tmax). This finding is indicative of a densification of the membrane lipid matrix of the LPE-rich cells. The suggestion is made that LPE is accumulated in glucose-fermenting bacterial cells in response to stress caused by oxygen deficiency and low pH values of the growth medium. The possible relationship between LPE accumulation and the virulence of Y. pseudotuberculosis cells grown at low temperatures is discussed.  相似文献   

2.
The comparative study of the synthesis lipids in Y. pseudotuberculosis, depending on the conditions of their cultivation (at different temperatures in mineral media and in media, containing organic compounds), has been carried out. As demonstrated in this study, temperature in the main inducing factor, affecting the synthesis of lipids of definite classes and fatty acids, incorporated into these lipids. During the cultivation of Y. pseudotuberculosis in mineral and organic media under the conditions of low temperature their lipid composition remains unchanged, but at 6 degrees C the synthesis of unsaturated fatty acids prevails, while at 37 degrees C saturated fatty acids are mainly synthesized. On mineral media at 37 degrees C bacteria synthesize mostly nonpolar lipids in the form of reserve substances, represented by triglycerides and free fatty acids.  相似文献   

3.
Effects of cultivation temperature (8 or 37 degrees C) and plasmid profile on the lipid A fatty acids of three isogenic Yersinia pseudotuberculosis strains (plasmidless (82-) and strains containing pVM82 (82+) or p57 (57+) plasmids) obtained by alkaline hydrolysis of the whole bacterial cells and differentiated from fatty acids of other membrane lipids were investigated. On the basis of the analysis, it is concluded that lipids A of all studied samples contain 3-hydroxytetradecanoic and dodecanoic acids, a part of which exists as the 3-dodecanoyloxytetradecanoic derivative. The effect of temperature appears in the higher contents of ester- and amide-linked 3-acyloxyalkanoic residues in lipid A from the "cold" variants of the bacteria and is determined by chromosomal genes. The plasmid effect is seen as various responses of the isogenic derivatives to change of growth temperature: in cells of strains 82+ and 82- grown in the cold, the share of lipid A fatty acids in the total population of cellular fatty acids is reduced, while in strains with plasmid p57 it is increased. The temperature variants of the 57+ strain differ by the low contents of amide-linked 3-acyloxyalkanoic acids. Finally, lack of plasmid pVM82 in the "warm" variants of the bacteria results in accumulation of glycolipid molecules deprived of dodecanoic acid. Correlation between growth temperature and plasmid profiles, on one hand, and lipid A fatty acid composition and potential pathogenic properties of the Y. pseudotuberculosis, on the other hand, and also possible mechanisms of thermal adaptation of this organism are discussed.  相似文献   

4.
The work presents the data indicating that the temperature of Y. pseudotuberculosis cultivation is very important in regulating the activity of pathogenicity factors, necessary for the initiation of the pathogenic process in the cells of the macroorganism. Low temperature (8-10 degrees C), necessary for the growth of Y. pseudotuberculosis, facilitates the activation of invasive and toxic pathogenicity factors. At a growth temperature of 37 degrees C the inhibition of such necessary attributes of virulence as adhesion and invasion into epithelial cells occurs in Y. pseudotuberculosis, which decreases the capacity of these bacteria for inducing the infectious process. The virulence of Y. pseudotuberculosis population, lost as the result of its cultivation in synthetic culture media at a temperature of 37 degrees C, has been found to be restored at low temperature.  相似文献   

5.
Y. pseudotuberculosis cells grown at biologically low temperature have been shown capable of chemotaxis with respect to carbohydrates and amino acids. During cultivation at 36-37 degrees C Y. pseudotuberculosis cells retain this property for 10-15 hours and then lose it. The mechanism of chemotaxis makes it possible for Y. pseudotuberculosis to "find" human and animal tissues and can facilitate the realization of the pathogenicity potential of these bacteria. When administered orally to mice motile bacteria, i. e. those grown at 6-8 degrees C, have been more virulent for the animals than nonmotile ones cultivated at 36-37 degrees C.  相似文献   

6.
The bacterium Xenorhabdus sp. is symbiotically associated with the entomopathogenic nematode Steinernema riobravis. This nematode is produced in monoxenic culture with Xenorhabdus sp. and is sold as a biological insecticide. Acceptable yields in fermentors can only be achieved in the presence of vigorous growth of the bacterium. We investigated the fatty acid composition of Xenorhabdus species when grown at 15, 20, 25 or 30 degrees C on media containing one of two primary carbon sources: glucose or lipids from the insect host, Galleria mellonella. Both temperature and primary carbon source significantly affected lipid quantity and quality in Xenorhabdus sp. Bacteria grown with insect lipids as a primary carbon source accumulated more lipids with greater proportion of longer chain fatty acids than bacteria grown with glucose as a primary carbon source. Cells grown with insect lipids at 15 degrees C had a lower lipid content than cells grown on the same media at 20, 25 or 30 degrees C. Increasing growth temperature increased saturated fatty acids and decreased unsaturated fatty acids, irrespective of carbon source. We recommend addition of complex fatty acid sources that resemble natural host lipids to growth medium for mass producing entomopathogenic nematodes. This could provide nematode quality similar to in vivo-produced nematodes.  相似文献   

7.
Differential scanning calorimetry (DSC) was used to examine the relationship of the gel to liquid-crystalline phase transition of lipids to fatty acid composition with membrane lipids and spheroplast membranes isolated from cells of a wild strain and an unsaturated fatty acid auxotroph of Escherichia coli grown under various conditions. These lipids and membranes underwent thermotropic phase transitions at different temperatures depending on the thermal properties of their constituent fatty acids. The lipid phase transition occurred at higher temperatures in biomembranes than in extracted lipids. DSC thermograms of lipids synthesized by bacterial cells which were observed at a temperature scanning rate as slow as 0.3 K min-1 were characterized by a distinctly plain peak summit. Endothermic peaks given by samples derived from elaidic acid-enriched cells were relatively narrow and asymmetric. The discrepancy between the transition temperatures measured with extracted lipids and with membraneous fractions, and the shape of the endothermic peaks, are discussed.  相似文献   

8.
Effects of glucose and growth temperature on Yersinia pseudotuberculosis O:1b serovar lipid composition have been studied. These growth parameters were shown to have drastic effects on biosynthetic processes in the pseudotuberculosis bacteria. The temperature effect is the most universal, extending to cell growth and to free lipid and lipopolysaccharide content and composition; it is most conspicuous in the bacteria cultivated on glucose-containing nutrient broth. The effect of glucose is selective, affecting only free lipids and depending on temperature (glucose favors phospholipid (PL) synthesis in the cold and inhibits it at 37°C); the effect of glucose is more evident in the cold. Determination of the contents of individual PL in percent dry bacterial weight indicates that the most obvious effect of glucose and/or growth temperature is on phosphatidylethanolamine (PE) content: on both media and at both temperatures an overall decrease in PL content stems from the inhibition of PE synthesis and is attended by decreasing ratio of neutral to acidic lipids.  相似文献   

9.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

10.
Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. ruckeri grown at 4 degrees C were characterized by fatty acid composition with a high content of C16:1 and C18:1, as well as the proportion of saturated to nonsaturated fatty acids equal to, on the average, 2.0. In Yersinia lipopolysaccharides a relatively high level of C16:1 and C12:0 was observed with the prevalence of 3-OH-C14:0. In the fatty-acid spectra of both cells and lipopolysaccharides no essential difference was noted. Thus, during growth at low temperature differences, earlier detected in the studied Yersinia species grown at 37 degrees C and making it possible to divide 7 Yersinia species into 2 groupes, were completely leveled. These results confirmed the close phylogenetic relationship between the Yersinia species under study and were indicative of more pronounced biological community of Yersinia under the conditions of growth at low temperature.  相似文献   

11.
Differential scanning calorimetry (DSC) is used to evaluate the thermal stability and reversibility after heat treatment of transitions associated with various cellular components of Escherichia coli and Lactobacillus plantarum. The reversibility and the change in the thermal stability of individual transitions are evaluated by a second temperature scan after preheating in the DSC to various temperatures between 40 and 130 degrees C. The viability of bacteria after a heat treatment between 55 and 70 degrees C in the DSC is determined by both plate count and calorimetric data. The fractional viability values based on calorimetric and plate count data show a linear relationship. Viability loss and the irreversible change in DSC thermograms of pretreated whole cells are highly correlated between 55 and 70 degrees C. Comparison of DSC scans for isolated ribosomes shows that the thermal stability of E. coli ribosomes is greater than that of L. plantarum ribosomes, consistent with the greater thermal tolerance of E. coli observed from viability loss and DSC scans of whole cells.  相似文献   

12.
The influence of culture conditions and plasmids on immunoglobulin (Ig)-binding activity of two isogenic strains of Yersinia pseudotuberculosis (plasmid-free strain 48(-)82(-) and strain 48(+)82(+) bearing plasmids pYV48 and pVM82) was studied. The highest activity was observed in the bacteria grown on glucose-containing liquid medium in the stationary growth phase. The Ig-binding activity of the bacteria cultured on the liquid medium at pH 6.0 was about 1.5-fold higher than that of the bacteria grown at pH 7.2. Expression of the Ig-binding proteins (IBPs) was most influenced by temperature of cultivation. The IBP biosynthesis was activated in the bacteria grown at 4 degrees C and markedly decreased in those grown at 37 degrees C. The Ig-binding activity of lysates from the bacteria was caused by proteins with molecular weights of 7-20 kD. The activities of the plasmid-free and plasmid-bearing Y. pseudotuberculosis strains (48(-)82(-) and 48(+)82(+), respectively) were analyzed, and the plasmids were shown to have no effect on the IBP expression and biosynthesis, which seemed to be determined by chromosomal genes.  相似文献   

13.
1. Pseudomonas fluorescens was grown at various temperatures between 5 degrees C and 33 degrees C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5 degrees C and 22 degrees C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure-area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5-22 degrees C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5 degrees C and 22 degrees C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids.  相似文献   

14.
The fatty acid composition of lipopolysaccharides of the strains of Y. enterocolitica, Y. intermedia, Y. frederiksenii and Y. ruckeri studied during cultivation on meat-peptone agar is characterized by the predominance of 3-hydroxytetradecanoic and dodecanoic acids. Closely related to the mentioned bacteria is the strain of Y. kristensenii which is distinguished only by its higher level of hexadecanoic acid. The strains of Y. pseudotuberculosis and the vaccine strain of Y. pestis have a uniform fatty acid composition of lipopolysaccharides with predominance of 3-hydroxytetradecanoic acid. Their relatively low level of dodecanoic acid conditions the characteristic fatty acid spectrum of lipopolysaccharides which differs from that of the above mentioned group of Yersinia. The peculiarities of the fatty acid composition of lipopolysaccharides of both groups of Yersinia are preserved during growth on meat-peptone broth, but the increase in the level of hexadecanoic acid balances the differences between Y. kristensenii, the other Y. enterocolitica-like bacteria and Y. ruckeri. The obtained results confirm close relationship of Y. pseudotuberculosis and Y. pestis, and also of Y. enterocolitica and Y. enterocolitica-like bacteria, showing propinquity of Y. ruckeri to the latter.  相似文献   

15.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

16.
The content of lysophosphatidylethanolamine (LPE) in Y. pseudotuberculosis cells was found to increase during their growth at 8 °C under stationary conditions (without stirring the medium) and at 37°C when the medium contained glucose. The maximum level of LPE (up to 45% of the total phospholipids) was observed in cells grown at 8°C under stationary conditions. Such cells showed decreas growth rate, a reduced yield of biomass, an altered cell morphology, and an increased cell area. The cells contained unsaturated fatty acids, phosphatidylethanolamine (PE), and total phospholipids in small amounts, whereas neutral lipids and diphosphatidylglycerol were abundant. In addition, the cells contained an amount of methylated PE and phospholipids of unknown structure. Irrespective of whether the temperature for growth was low or high, the LPE-rich cells showed a high value (32–36°C) of the maximum temperature of thermal transition of lipids (T max). This finding is indicative of a densification of the membrane lipid matrix of the LPE-rich cells. The suggestion is made that LPE is accumulated in bacterial cells in response to stress caused by oxygen deficiency and pH decrease in the course of glucose fermentatin. The possible relationship between LPE accumulation and the virulence of Y. pseudotuberculosis cells grown at low temperatures is discussed.  相似文献   

17.
Data are presented on the effects of a variety of abiotic and biotic environmental factors on the existence and changes in the numbers of Y. pseudotuberculosis. Experiments with sterile soil showed that Y. pseudotuberculosis populations were resistant over a wide range of major abiotic factors: temperature (0-30 degrees C), humidity (15-50%), pH (5.9-9.0). Although exerting some effect on the duration of different growth phases, the above abiotic factors did not influence, within the tested range, the general nature of populational dynamics of the microbe. Comparative experiments carried out in sterile and natural soil specimens using an RNA-polymerase mutant warranted the conclusion that the numbers of Y. pseudotuberculosis in soil (water) are largely controlled by the biotic components of ecosystems, including microflora and microfauna. Y. pseudotuberculosis was shown to exist in the environment (vegetable storehouses and substrate of rodent nests) in association with bacteria belonging to the family Enterobacteriaceae as well as the genera Acinetobacter and Pseudomonas. Endosymbiotic relationships are described between Y. pseudotuberculosis and the free-living infusorian Tetrahymena pyriformis which sustains microbial populations in the soil (water).  相似文献   

18.
Y. pseudotuberculosis cells cultivated at temperatures of 37 degrees C and 8 degrees C were found to be capable of incorporating exogenic precursors into DNA, RNA and protein. The linear growth of thymidine incorporation occurred during 8 hours of cultivation at 37 degrees C, then the amount of the incorporated label decreased. At 8 degrees C the level of thymidine incorporation into DNA gradually increased for 80 hours and longer, but not reaching the level of incorporation observed at 37 degrees C. The incorporation of uridine into RNA of Y. pseudotuberculosis cells reached its maximum after 4 hours of cultivation at 37 degrees C, at a lower temperature of cultivation the incorporation of uridine into bacterial cells was almost linear, though slower, and lasted for 20 hours. The content of radioactive alanine in Y. pseudotuberculosis protein increased during 16 hours of cultivation at a high temperature, while at 8 degrees C the growth of the incorporation level lasted for at least 40 hours. For all precursors under study the incorporation rate into the cell biopolymers at the initial stages of cultivation was higher at 37 degrees C, than at a lower temperature.  相似文献   

19.
The effect of growth temperature on the cellular fatty acid composition of sulphate-reducing bacteria (SRB) was studied in 12 species belonging to eight genera including psychrophiles and mesophiles. Most of these species were of marine origin. The investigated SRB with the exception of four Desulfobacter species exhibited only a minor increase in the proportion of cis-unsaturated fatty acids (by < or = 5% per 10 degrees C) when the growth temperature was decreased; psychrophiles maintained their typically high content of cis-unsaturated fatty acids (around 75% of total fatty acids) nearly constant. The four Desulfobacter species, however, increased the proportion of cis-unsaturated among total fatty acids significantly (by > or =14% per 10 degrees C; measured in late growth phase) with decreasing growth temperature. The ratio between unsaturated and saturated fatty acids in Desulfobacter species changed not only with the growth temperature, but also with the growth state in batch cultures at constant temperature. Changes of cellular fatty acids were studied in detail with D. hydrogenophilus, the most psychrotolerant (growth range 0-35 degrees C) among the mesophilic SRB examined. Desulfobacter hydrogenophilus also formed cis-9,10-methylenehexadecanoic acid (a cyclopropane fatty acid) and 10-methylhexadecanoic acid. At low growth temperature (12 degrees C), the relative amount of these fatty acids was at least threefold lower; this questions the usefulness of 10-methylhexadecanoic acid as a reliable biomarker of Desulfobacter in cold sediments.  相似文献   

20.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号