首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
It is widely acknowledged that the presence of extracellular matrix components as substrates can drastically modulate the phenotype and gene expression of cultured cells, including tumor cells. A number of published reports indicated that substrates made from two peculiar collagen species, i.e. type V and OF/LB, which are abnormally deposited in the stroma of primary ductal infiltrating carcinoma (d.i.c.) of the breast “in vivo,” were able to exert marked and opposite effects on “in vitro” viability, growth and invasiveness of the 8701-BC cell line, isolated from d.i.c.-affected breast epithelium. To complement such functional data on the effect of cell-collagen interactions with information at molecular level, we have utilized a combination of differential display- and semi-quantitative multiplex-PCR techniques with the aim of detecting variations in the expression levels of selected genes by cells maintained in either culture condition. Here we report some prototypical data on the identification and semi-quantitation of three of the differentially-amplified PCR products found, i.e.HSP2A andMSF-B which are up-regulated in cells grown onto OF/LB collagen substrate, andSRCAP which is prominently down-regulated in the presence of type V collagen substrate. This protocol represents a powerful tool for evaluating changes in the levels and patterns of gene expression which can be theoretically adapted to any experimental model system. Published: November 24, 2003  相似文献   

2.
3.
4.
We have previously reported that type V collagen is a poorly adhesive, anti-proliferative and motility-inhibitory substrate for the 8701-BC breast cancer cell line, which also triggers DNA fragmentation and impairs survival of the same cell line. In the present work we have extended to other breast cancer cell lines (T47-D, MDA-MB231, Hs578T) our investigation of type V collagen influence on the DNA status and cell survival, also examining whether adhesion and growth of cells on this collagen substrate could exert some effect on the expression level of selected apoptosis-related genes. We report here that, among the cell lines tested, only T47-D is responsive to the death-promoting influence of type V collagen. In addition, the latter induces changes in gene expression by up-regulating p53, Waf-1, Cas, Dap kinase and caspases 1, -5 and -14 and down-regulating Bcl-2. Our data validate the T47-D line as a suitable in vitro model for further and more detailed studies on the molecular mechanisms of the death response induced by type V collagen on mammary tumor cells.  相似文献   

5.
We have applied an in-depth quantitative proteomic approach, combining isotopic labeling extensive intact protein separation and mass spectrometry, for high confidence identification of protein changes in plasmas from a mouse model of breast cancer. We hypothesized that a wide spectrum of proteins may be up-regulated in plasma with tumor development and that comparisons with proteins expressed in human breast cancer cell lines may identify a subset of up-regulated proteins in common with proteins expressed in breast cancer cell lines that may represent candidate biomarkers for breast cancer. Plasma from PyMT transgenic tumor-bearing mice and matched controls were obtained at two time points during tumor growth. A total of 133 proteins were found to be increased by 1.5-fold or greater at one or both time points. A comparison of this set of proteins with published findings from proteomic analysis of human breast cancer cell lines yielded 49 proteins with increased levels in mouse plasma that were identified in breast cancer cell lines. Pathway analysis comparing the subset of up-regulated proteins known to be expressed in breast cancer cell lines with other up-regulated proteins indicated a cancer related function for the former and a host-response function for the latter. We conclude that integration of proteomic findings from mouse models of breast cancer and from human breast cancer cell lines may help identify a subset of proteins released by breast cancer cells into the circulation and that occur at increased levels in breast cancer.  相似文献   

6.
The influence of alphaVbeta3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing beta3 integrin status. Overexpression of beta3 integrin caused increased cell surface expression of alphaV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. beta3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, alphaVbeta3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of beta3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with beta3 integrin expression. Although our studies confirm important biological effects of alphaVbeta3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, beta3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by alphaVbeta3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.  相似文献   

7.
8.
Type V collagen is a "minor" component of normal human breast stroma, which is subjected to over-deposition in cases of ductal infiltrating carcinoma (DIC). We reported that, if used as a culture substrate for the DIC cell line 8701-BC, it exhibited poorly-adhesive properties and restrained the proliferative and motile behavior of the cell subpopulation able to attach onto it. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of 8701-BC cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by type V collagen was of the apoptotic type by (i) microscopic detection and quantitation of Apoptag-labeled cells, (ii) analysis of the expression levels of selected genes coding for apoptosis-linked factors, caspases, and stress-response proteins by conventional and semi-quantitative multiplex PCR, and (iii) evaluation of the extent of caspase activation by chromogenic assay. We report here that type V collagen is able to determine an increase in the percentage of Apoptag-positive cells, to up-regulate Bcl-xS, Bad, Dap kinase, hsf-1, mthsp75, caspase-1, -5, -8, -9, and -14, whilst down-regulating Bcl-2, Bcl-xbeta, and hsp60. Treatment of cell lysates with chromogenic tetrapeptide substrates specific for caspase-1, -5, -8, and -9 demonstrated a marked increase of enzymatic activity in the presence of type V collagen. Our data validate 8701-BC cell line as a suitable "in vitro" model for further and more detailed studies on the molecular mechanisms of the death response induced by type V collagen on primary DIC cells.  相似文献   

9.
10.
In view of the pivotal role of glutamate carboxypeptidase II (GCPII) in carcinogenesis, its expression as prostate specific membrane antigen (PSMA) and folate hydrolase (FOLH1) may be influenced by its haplotypes, contributing to the etiology of prostate and breast cancer. To test this hypothesis, breast and prostate cancer cases and controls were subjected to whole gene screening of GCPII and correlated with plasma folate levels and PSMA expression. The impact of variants on a 3-dimensional structure of GCPII was explored by in silico studies. Six novel variations i.e. V108A, P160S, Y176H, D191V, G206R and G245S; and two known variations i.e. R190W and H475Y were identified in GCPII. All-wild haplotype and a haplotype harbouring D191V showed association with breast cancer risk while haplotypes harbouring V108A and P160S reduced the risk. Haplotypes with V108A and G245S variants showed increased risk for prostate cancer due to high PSMA expression while P160S conferred protection against prostate cancer. In silico studies suggests that P160S and R190W variants result in relaxed substrate binding facilitating either rapid catalysis or exchange of substrates and products in the active site which was substantiated by high plasma folate levels associated with these variants. On the contrary, D191V was associated with very low plasma folate levels despite having a high PSMA expression. This is the first comprehensive study examining variations in GCPII in relation to breast and prostate cancer risk. Changes in the plasma folate levels and changes in PSMA expression are associated with breast and prostate cancer risk respectively.  相似文献   

11.
Cell populations often display heterogeneous behavior, including cell-to-cell variations in morphology, adhesion and spreading. However, better understanding the significance of such cell variations for the function of the population as a whole requires quantitative single-cell assays. To investigate adhesion variability in a CHO cell population in detail, we measured integrin-mediated adhesion to laminin and collagen, two ubiquitous ECM components, by AFM-based single-cell force spectroscopy (SCFS). CHO cells generally adhered more strongly to laminin than collagen but population adhesion force distributions to both ECM components were broad and partially overlapped. To determine the levels of laminin and collagen binding in individual cells directly, we alternatingly measured single cells on adjacent microstripes of collagen and laminin arrayed on the same adhesion substrate. In repeated measurements (≥60) individual cells showed a stable and ECM type-specific adhesion response. All tested cells bound laminin more strongly, but the scale of laminin over collagen binding varied between cells. Together, this demonstrates that adhesion levels to different ECM components are tightly yet differently set in each cell of the population. Adhesion variability to laminin was non-genetic and cell cycle-independent but scaled with the range of α6 integrin expression on the cell surface. Adhesive cell-to-cell variations due to varying receptor expression levels thus appear to be an inherent feature of cell populations and should to be considered when fully characterizing population adhesion. In this approach, SCFS performed on multifunctional adhesion substrates can provide quantitative single-cell information not obtainable from population-averaging measurements on homogeneous adhesion substrates.  相似文献   

12.
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.  相似文献   

13.
ABSTRACT

Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.  相似文献   

14.
High levels of Wilms' Tumor 1 (WT1) mRNA have been correlated with poor prognosis in breast cancer patients. However, the function of WT1 protein in breast cancer is not known. We observed that the levels of WT1 protein correlated with the proliferation of breast cancer cells. When the proliferation of breast cancer cells was stimulated by 17beta-estradiol, WT1 protein expression increased. But when the proliferation of breast cancer cells was inhibited by tamoxifen or all-trans retinoic acid (ATRA), WT1 protein expression decreased. We hypothesize that WT1 protein plays a role in regulating breast cancer cell proliferation. Using liposome-incorporated WT1 antisense oligodeoxynucleotides, we found that downregulation of WT1 protein expression led to breast cancer growth inhibition and reduced cyclin D1 protein levels. These results indicate that WT1 protein contributes to breast cancer progression by promoting breast cancer cell proliferation.  相似文献   

15.
Collagen type V is highly expressed during tissue development and wound repair, but its exact function remains unclear. Cell binding to collagen V affects various basic cell functions and increased collagen V levels alter the structural organization and the stiffness of the ECM. We studied the combined effects of collagen V and substrate stiffness on the morphology, focal adhesion formation, and actin organization of fibroblasts. We found that a hybrid collagen I/V coating impairs fibroblast spreading on soft substrates (<10 kPa), but not on stiffer substrates (68 kPa or glass). In sharp contrast, a pure collagen I coating does not impair cell spreading on soft substrates. The impairment of cell spreading by collagen V is accompanied by diffuse actin staining patterns and small focal adhesions. These observations suggest that collagen V plays an essential role in modifying cell behavior during development and remodeling, when very soft tissues are present.  相似文献   

16.
To identify potential cancer related glycoproteins in breast cancer cells, we enriched N-linked glycoproteins by lentil lectin from the human breast cancer cell line Hs578T and the normal breast cell line Hs578BST for proteomic comparison. Glycoproteins were separated and compared by two-dimensional electrophoresis. Twenty-four glycoproteins were identified that expressed remarkably differently, among which nine were involved in the progress of collagen synthesis. Prolyl 4-hydroxylase alpha polypeptide II (P4HA2) expression and influence in breast cancer was further investigated. Immunohistochemistry revealed that P4HA2 was upregulated in breast tumor cells compared with its adjacent normal tissues. Moreover, overexpression and RNA interference of P4HA2 showed that P4HA2 expression suppressed cell proliferation and migration in Hs578T in vitro.  相似文献   

17.
A shot-gun comparative proteomic investigation utilizing proteolytic 18O labeling has been carried out on a drug susceptible MCF-7 human breast cancer cell line and a related cell line that is resistant to doxorubicin. The proteolytic 18O labeling method has been further refined and optimized for application to a protein fraction stemming from the cytosol of the breast cancer cells. The comparative investigation revealed several proteins with altered expression levels in the doxorubicin resistant line. These altered proteins are considered for a possible role in doxorubicin resistance.  相似文献   

18.
Human MCF-7/6 breast cancer cells differ from their MCF-7/AZ counterparts by their invasiveness in a number of assays in vitro, such as invasion of MCF-7 spheroids into embryonic chick heart fragments or type I collagen gels. Comparative proteomic analysis of these two variants revealed an identical pattern, except for a 230 kDa protein present in the invasive MCF-7/6 variant, but hardly detectable in the non-invasive MCF-7/AZ one. This protein appeared to be the non-muscle myosin IIA heavy chain (NMIIA), also coined MYH9. Experimental inhibition of NMIIA by reducing either its expression (via stable shRNA transduction) or its function (via the specific ATPase inhibitor blebbistatin) underpinned the decisive role of NMIIA in MCF-7 cell invasion. Inhibition of NMIIA indeed blocked the invasion of MCF-7/6 cells in three-dimensional invasion substrata such as embryonic chick heart fragments and type I collagen gels. Invasiveness of MCF-7/6 cells has been related to poor formation and compaction of aggregates, due to a functionally defective E-cadherin/catenin complex. Both genetic and pharmacological inhibition of NMIIA stimulated MCF-7/6 cell aggregation. Together, these data indicate that NMIIA is a decisive protein for MCF-7 cells to invade, indicating that this molecule is a candidate for targeted anti-invasive treatment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号