首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human novel reductase 1 (NR1) is an NADPH dependent diflavin oxidoreductase related to cytochrome P450 reductase (CPR). The FAD/NADPH- and FMN-binding domains of NR1 have been expressed and purified and their redox properties studied by stopped-flow and steady-state kinetic methods, and by potentiometry. The midpoint reduction potentials of the oxidized/semiquinone (-315 +/- 5 mV) and semiquinone/dihydroquinone (-365 +/- 15 mV) couples of the FAD/NADPH domain are similar to those for the FAD/NADPH domain of human CPR, but the rate of hydride transfer from NADPH to the FAD/NADPH domain of NR1 is approximately 200-fold slower. Hydride transfer is rate-limiting in steady-state reactions of the FAD/NADPH domain with artificial redox acceptors. Stopped-flow studies indicate that hydride transfer from the FAD/NADPH domain of NR1 to NADP+ is faster than hydride transfer in the physiological direction (NADPH to FAD), consistent with the measured reduction potentials of the FAD couples [midpoint potential for FAD redox couples is -340 mV, cf-320 mV for NAD(P)H]. The midpoint reduction potentials for the flavin couples in the FMN domain are -146 +/- 5 mV (oxidized/semiquinone) and -305 +/- 5 mV (semiquinone/dihydroquinone). The FMN oxidized/semiquinone couple indicates stabilization of the FMN semiquinone, consistent with (a) a need to transfer electrons from the FAD/NADPH domain to the FMN domain, and (b) the thermodynamic properties of the FMN domain in CPR and nitric oxide synthase. Despite overall structural resemblance of NR1 and CPR, our studies reveal thermodynamic similarities but major kinetic differences in the electron transfer reactions catalysed by the flavin-binding domains.  相似文献   

2.
Human methionine synthase reductase (MSR) catalyzes the NADPH-dependent reductive methylation of methionine synthase. MSR is 78 kDa flavoprotein belonging to a family of diflavin reductases, with cytochrome P450 reductase (CPR) as the prototype. MSR and its individual flavin-binding domains were cloned as GST-tagged fusion proteins for expression and purification from Escherichia coli. The isolated flavin domains of MSR retain UV-visible and secondary structural properties indicative of correctly folded flavoproteins. Anaerobic redox titrations on the individual domains assisted in assignment of the midpoint potentials for the high- and low-potential flavin. For the isolated FMN domain, the midpoint potentials for the oxidized/semiquinone (ox/sq) couple and semiquinone/hydroquinone (sq/hq) couple are -112 and -221 mV, respectively, at pH 7.0 and 25 degrees C. The corresponding couples in the isolated FAD domain are -222 mV (ox/sq) and -288 mV (sq/hq). Both flavins form blue neutral semiquinone species characterized by broad absorption peaks in the long-wavelength region during anaerobic titration with sodium dithionite. In full-length MSR, the values of the FMN couples are -109 mV (ox/sq) and -227 mV (sq/hq), and the corresponding couple values for FAD are -254 mV (ox/sq) and -291 mV (sq/hq). Separation of the MSR flavins does not perturb their thermodynamic properties, as midpoint potentials for all four couples are similar in isolated domains and in full-length MSR. The redox properties of MSR are discussed in relation to other members of the diflavin oxidoreductase family and the mechanism of electron transfer.  相似文献   

3.
Midpoint reduction potentials for the flavin cofactors in the reductase domain of rat neuronal nitric oxide synthase (nNOS) in calmodulin (CaM)-free and -bound forms have been determined by direct anaerobic titration. In the CaM-free form, the FMN potentials are -49 +/- 5 mV (oxidized/semiquinone) -274 +/- 5 mV (semiquinone/reduced). The corresponding FAD potentials are -232 +/- 7, and -280 +/- 6 mV. The data indicate that each flavin can exist as a blue (neutral) semiquinone. The accumulation of blue semiquinone on the FMN is considerably higher than seen on the FAD due to the much larger separation (225 mV) of its two potentials (cf. 48 mV for FAD). For the CaM-bound form of the protein, the midpoint potentials are essentially identical: there is a small alteration in the FMN oxidized/semiquinone potential (-30 +/- 4 mV); the other three potentials are unaffected. The heme midpoint potentials for nNOS [-239 mV, L-Arg-free; -220 mV, L-Arg-bound; Presta, A., Weber-Main, A. M., Stankovich, M. T., and Stuehr, D. J. (1998) J. Am. Chem. Soc. 120, 9460-9465] are poised such that electron transfer from flavin domain is thermodynamically feasible. Clearly, CaM binding is necessary in eliciting conformational changes that enhance flavin to flavin and flavin to heme electron transfers rather than causing a change in the driving force.  相似文献   

4.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

5.
Human methionine synthase reductase (MSR) is a protein containing both FAD and FMN, and it reactivates methionine synthase that has lost activity due to oxidation of cob(I)alamin to cob(II)alamin. In this study, anaerobic redox titrations were employed to determine the midpoint reduction potentials for the flavin cofactors in two highly prevalent polymorphic variants of MSR, I22/L175 and M22/S175. The latter is a genetic determinant of plasma homocysteine levels and has been linked to premature coronary artery disease, Down's syndrome, and neural tube defects. The I22/L175 polymorphism has been described in a homocystinuric patient. Interestingly, this polymorphism is in the extended linker region between the two flavin domains, which may mediate or facilitate interaction with methionine synthase. In MSR I22/L175, the FMN potentials are -103 mV (oxidized/semiquinone) and -175 mV (semiquinone/hydroquinone) at pH 7.0 and 25 degrees C, and the corresponding FAD potentials are -252 and -285 mV, respectively. For the M22/S175 variants, the values of the four midpoint potentials are -114 mV (FMN oxidized/semiquinone), -212 mV (FMN semiquinone/hydroquinone), -236 mV (FAD oxidized/semiquinone), and -264 mV (FAD semiquinone/hydroquinone). The midpoint potential values in the two variants are generally comparable to those originally determined for the MSR I22/S175 variant [Wolthers, K. R. (2003) Biochemistry 42, 3911-3920], with relatively minor variations in the different redox couples. In each case, blue neutral flavin semiquinone species are stabilized on both flavins, and are characterized by a broad absorption band in the long wavelength region. In addition, stopped-flow absorption and fluorescence spectroscopy were used to study the pre-steady state reduction kinetics by NADPH of the two polymorphic variants. The reversible kinetic model proposed for wild-type MSR was validated for the I22/L175 and M22/S175 variants. Thus, the biochemical penalties associated with these polymorphisms, which result in less effective methionine synthase activation, do not appear to result from differences in their reduction kinetics. It is likely that differences in their relative affinities for the redox partner, methionine synthase, underlie the differences in the relative efficiencies of reductive activation exhibited by the variants.  相似文献   

6.
Blazyk JL  Lippard SJ 《Biochemistry》2002,41(52):15780-15794
Soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) catalyzes the selective oxidation of methane to methanol, the first step in the primary catabolic pathway of methanotrophic bacteria. A reductase (MMOR) mediates electron transfer from NADH through its FAD and [2Fe-2S] cofactors to the dinuclear non-heme iron sites housed in a hydroxylase (MMOH). The structurally distinct [2Fe-2S], FAD, and NADH binding domains of MMOR facilitated division of the protein into its functional ferredoxin (MMOR-Fd) and FAD/NADH (MMOR-FAD) component domains. The 10.9 kDa MMOR-Fd (MMOR residues 1-98) and 27.6 kDa MMOR-FAD (MMOR residues 99-348) were expressed and purified from recombinant Escherichia coli systems. The Fd and FAD domains have absorbance spectral features identical to those of the [2Fe-2S] and flavin components, respectively, of MMOR. Redox potentials, determined by reductive titrations that included indicator dyes, for the [2Fe-2S] and FAD cofactors in the domains are as follows: -205.2 +/- 1.3 mV for [2Fe-2S](ox/red), -172.4 +/- 2.0 mV for FAD(ox/sq), and -266.4 +/- 3.5 mV for FAD(sq/hq). Kinetic and spectral properties of intermediates observed in the reaction of oxidized MMOR-FAD (FAD(ox)) with NADH at 4 degrees C were established with stopped-flow UV-visible spectroscopy. Analysis of the influence of pH on MMOR-FAD optical spectra, redox potentials, and NADH reaction kinetics afforded pK(a) values for the semiquinone (FAD(sq)) and hydroquinone (FAD(hq)) MMOR-FAD species and two protonatable groups near the flavin cofactor. Electron transfer from MMOR-FAD(hq) to oxidized MMOR-Fd is extremely slow (k = 1500 M(-1) s(-1) at 25 degrees C, compared to 90 s(-1) at 4 degrees C for internal electron transfer between cofactors in MMOR), indicating that cofactor proximity is essential for efficient interdomain electron transfer.  相似文献   

7.
In this study, we have analyzed interflavin electron transfer reactions from FAD to FMN in both the full-length inducible nitric oxide synthase (iNOS) and its reductase domain. Comparison is made with the interflavin electron transfer in NADPH-cytochrome P450 reductase (CPR). For the analysis of interflavin electron transfer and the flavin intermediates observed during catalysis we have used menadione (MD), which can accept an electron from both the FAD and FMN sites of the enzyme. A characteristic absorption peak at 630 and 520 nm can identify each FAD and FMN semiquinone species, which is derived from CPR and iNOS, respectively. The charge transfer complexes of FAD with NADP+ or NADPH were monitored at 750 nm. In the presence of MD, the air-stable neutral (blue) semiquinone form (FAD-FMNH*) was observed as a major intermediate during the catalytic cycle in both the iNOS reductase domain and full-length enzyme, and its formation occurred without any lag phase indicating rapid interflavin electron transfer following the reduction of FAD by NADPH. These data also strongly suggest that the low level reactivity of a neutral (blue) FMN semiquinone radical with electron acceptors enables one-electron transfer in the catalytic cycle of both the FAD-FMN pairs in CPR and iNOS. On the basis of these data, we propose a common model for the catalytic cycle of both CaM-bound iNOS reductase domain and CPR.  相似文献   

8.
The NADPH cytochrome P450 reductase (CPR), a diflavin enzyme, catalyzes the electron transfer (ET) from NADPH to the substrate P450. The crystal structures of mammalian and yeast CPRs show a compact organization for the two domains containing FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide), with a short interflavin distance consistent with fast ET from the NADPH-reduced FAD to the second flavin FMN. This conformation, referred as "closed", contrasts with the alternative opened or extended domain arrangements recently described for partially reduced or mutant CPR. Internal domain flexibility in this enzyme is indeed necessary to account for the apparently conflicting requirements of having FMN flavin accessible to both the FAD and the substrate P450 at the same interface. However, how interdomain dynamics influence internal and external ETs in CPR is still largely unknown. Here, we used NMR techniques to explore the global, domain-specific and residue-specific structural and dynamic properties of the nucleotide-free human CPR in solution in its oxidized state. Based on the backbone resonance assignment of this 70-kDa protein, we collected residue-specific (15)N relaxation and (1)H-(15)N residual dipolar couplings. Surprisingly and in contrast with previous studies, the analysis of these NMR data revealed that the CPR exists in a unique and predominant conformation that highly resembles the closed conformation observed in the crystalline state. Based on our findings and the previous observations of conformational equilibria of the CPR in partially reduced states, we propose that the large-scale conformational transitions of the CPR during the catalytic cycle are tightly controlled to ensure optimal electron delivery.  相似文献   

9.
Human methionine synthase reductase (MSR), a diflavin oxidoreductase, plays a vital role in methionine and folate metabolism by sustaining methionine synthase (MS) activity. MSR catalyzes the oxidation of NADPH and shuttles electrons via its FAD and FMN cofactors to inactive MS-cob(II)alamin. A conserved aromatic residue (Trp697) positioned next to the FAD isoalloxazine ring controls nicotinamide binding and catalysis in related flavoproteins. We created four MSR mutants (W697S, W697H, S698Δ, and S698A) and studied their associated kinetic behavior. Multiwavelength stopped-flow analysis reveals that NADPH reduction of the C-terminal Ser698 mutants occurs in three resolvable kinetic steps encompassing transfer of a hydride ion to FAD, semiquinone formation (indicating FAD to FMN electron transfer), and slow flavin reduction by a second molecule of NADPH. Corresponding experiments with the W697 mutants show a two-step flavin reduction without an observable semiquinone intermediate, indicating that W697 supports FAD to FMN electron transfer. Accelerated rates of FAD reduction, steady-state cytochrome c(3+) turnover, and uncoupled NADPH oxidation in the S698Δ and W697H mutants may be attributed to a decrease in the energy barrier for displacement of W697 by NADPH. Binding of NADP(+), but not 2',5'-ADP, is tighter for all mutants than for native MSR. The combined studies demonstrate that while W697 attenuates hydride transfer, it ensures coenzyme selectivity and accelerates FAD to FMN electron transfer. Moreover, analysis of analogous cytochrome P450 reductase (CPR) variants points to key differences in the driving force for flavin reduction and suggests that the conserved FAD stacking tryptophan residue in CPR also promotes interflavin electron transfer.  相似文献   

10.
Mammalian nitric-oxide synthases are large modular enzymes that evolved from independently expressed ancestors. Calmodulin-controlled isoforms are signal generators; calmodulin activates electron transfer from NADPH through three reductase domains to an oxygenase domain. Structures of the reductase unit and its homologs show FMN and FAD in contact but too isolated from the protein surface to permit exit of reducing equivalents. To study states in which FMN/heme electron transfer is feasible, we designed and produced constructs including only oxygenase and FMN binding domains, eliminating strong internal reductase complex interactions. Constructs for all mammalian isoforms were expressed and purified as dimers. All synthesize NO with peroxide as the electron donor at rates comparable with corresponding oxygenase constructs. All bind cofactors nearly stoichiometrically and have native catalytic sites by spectroscopic criteria. Modest differences in electrochemistry versus independently expressed heme and FMN binding domains suggest interdomain interactions. These interactions can be convincingly demonstrated via calmodulin-induced shifts in high spin ferriheme EPR spectra and through mutual broadening of heme and FMNH. radical signals in inducible nitric-oxide synthase constructs. Blue neutral FMN semiquinone can be readily observed; potentials of one electron couple (in inducible nitric-oxide synthase oxygenase FMN, FMN oxidized/semiquinone couple = +70 mV, FMN semiquinone/hydroquinone couple = -180 mV, and heme = -180 mV) indicate that FMN is capable of serving as a one electron heme reductant. The construct will serve as the basis for future studies of the output state for NADPH derived reducing equivalents.  相似文献   

11.
Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have been used to determine the reduction potentials of the flavins and the 2Fe-2S center and to characterize radicals and their interactions. Reductive titration using dithionite indicates a five-electron capacity for DHODB. The midpoint reduction potential of the 2Fe-2S center (-212 +/- 3 mV) was determined from analysis of absorption data at 540 nm, where absorption contributions from the two flavins are small. The midpoint reduction potentials of the oxidized/semiquinone (E(1)) and semiquinone/hydroquinone (E(2)) couples for the FMN (E(1) = -301 +/- 6 mV; E(2) = -252 +/- 8 mV) and FAD (E(1) = -312 +/- 6 mV; E(2) = -297 +/- 5 mV) were determined from analysis of spectral changes at 630 nm. Corresponding values for the midpoint reduction potentials for FMN (E(1) = -298 +/- 4 mV; E(2) = -259 +/- 5 mV) in the isolated catalytic subunit (subunit D, which lacks the 2Fe-2S center and FAD) are consistent with the values determined for the FMN couples in DHODB. During reductive titration of DHODB, small amounts of the neutral blue semiquinone are observed at approximately 630 nm, consistent with the measured midpoint reduction potentials of the flavins. An ENDOR spectrum of substrate-reduced DHODB identifies hyperfine couplings to proton nuclei similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual signal is assigned to the formation of a spin interacting state between the FMN semiquinone species and the reduced 2Fe-2S center. Reduction of DHODB using an excess of NADH or dihydroorotate produces EPR spectra that are distinct from those produced by dithionite. From potentiometric studies, the reduction of the 2Fe-2S center and the reduction of the FMN occur concomitantly. The study provides a detailed thermodynamic framework for electron transfer in this complex iron-sulfur flavoprotein.  相似文献   

12.
Redox titration of all optically detectable prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) at pH 7.5 showed that the functionally active enzyme possesses only three titratable flavin cofactors, one noncovalently bound FAD and two covalently bound FMN residues. All three flavins undergo different redox transitions during the function of the enzyme. The noncovalently bound FAD works as a "classical" two-electron carrier with a midpoint potential (E(m)) of -200 mV. Each of the FMN residues is capable of only one-electron reduction: one from neutral flavosemiquinone to fully reduced flavin (E(m) = 20 mV) and the other from oxidized flavin to flavosemiquinone anion (E(m) = -150 mV). The lacking second half of the redox transitions for the FMNs cannot be reached under our experimental conditions and is most likely not employed in the catalytic cycle. Besides the flavins, a [2Fe-2S] cluster was shown to function in the enzyme as a one-electron carrier with an E(m) of -270 mV. The midpoint potentials of all the redox transitions determined in the enzyme were found to be independent of Na(+) concentration. Even the components that exhibit very strong retardation in the rate of their reduction by NADH at low sodium concentrations experienced no change in the E(m) values when the concentration of the coupling ion was changed 1000 times. On the basis of these data, plausible mechanisms for the translocation of transmembrane sodium ions by Na(+)-NQR are discussed.  相似文献   

13.
Cénas N  Lê KH  Terrier M  Lederer F 《Biochemistry》2007,46(15):4661-4670
Saccharomyces cerevisiae flavocytochrome b2 (L-lactate:cytochrome c oxido reductase, EC 1.1.2.3) is a homotetramer, with FMN and protoheme IX binding on separate domains. The flavin-binding domains form the enzyme tetrameric core, while the cytochrome b2 domains appear to be mobile around a hinge region (Xia, Z. X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 867-863). The enzyme catalyzes electron transfer from L-lactate to cytochrome c, or to nonphysiological acceptors such as ferricyanide, via FMN and heme b2. The kinetics of this multistep reaction are complex. In order to clarify some of its aspects, the tetrameric FMN-binding domain (FDH domain) has been independently expressed in Escherichia coli (Balme, A., Brunt, C. E., Pallister, R., Chapman, S. K., and Reid, G. A. (1995) Biochem. J. 309, 601-605). We present here an additional characterization of this domain. In our hands, it has essentially the same ferricyanide reductase activity as the holo-enzyme. The comparison of the steady-state kinetics with ferricyanide as acceptor and of the pre-steady-state kinetics of flavin reduction, as well as the kinetic isotope effects of the reactions using L-2-[2H]lactate, indicates that flavin reduction is the limiting step in lactate oxidation. During the oxidation of the reduced FDH domain by ferricyanide, the oxidation of the semiquinone is much faster than the oxidation of two-electron-reduced flavin. This order of reactivity is reversed during flavin to heme b2 transfer in the holo-enzyme. Potentiometric studies of the protein yielded a standard redox potential for FMN at pH 7.0, E(o)7, of -81 mV, a value practically identical to the published value of -90 mV for FMN in holo-flavocytochrome b2. However, as expected from the kinetics of the oxidative half-reaction, the FDH domain was characterized by a significantly destabilized flavin semiquinone state compared with holo-enzyme, with a semiquinone formation constant K of 1.25-0.64 vs 33.5, respectively (Tegoni, M., Silvestrini, M. C., Guigliarelli, B., Asso, M., and Bertrand, P. (1998) Biochemistry, 37, 12761-12771). As in the holo-enzyme, the semiquinone state in the FDH domain is significantly stabilized by the reaction product, pyruvate. We also studied the inhibition exerted in the steady and pre steady states by the reaction product pyruvate and by anions (bromide, chloride, phosphate, acetate), with respect to both flavin reduction and reoxidation. The results indicate that these compounds bind to the oxidized and the two-electron-reduced forms of the FDH domain, and that excess L-lactate also binds to the two-electron-reduced form. These findings point to the existence of a common or strongly overlapping binding site. A comparison of the effect of the anions on WT and R289K holo-flavocytochromes b2 indicates that invariant R289 belongs to this site. According to literature data, it must also be present in other members of the family of L-2-hydroxy acid-oxidizing enzymes.  相似文献   

14.
The three mammalian nitric-oxide synthases produce NO from arginine in a reaction requiring 3 electrons per NO, which are supplied to the catalytic center from NADPH through reductase domains incorporating FAD and FMN cofactors. The isoforms share a common reaction mechanism and requirements for reducing equivalents but differ in regulation; the endothelial and neuronal isoforms are controlled by calcium/calmodulin modulation of the electron transfer system, while the inducible isoform binds calmodulin at all physiological Ca(2+) concentrations and is always on. The thermodynamics of electron transfer through the flavin domains in all three isoforms are basically similar. The major flavin states are FMN, FMNH., FMNH(2), FAD, FADH., and FADH(2). The FMN/FMNH. couple is high potential ( approximately 100 mV) in all three isoforms and is unlikely to be catalytically competent; the other three flavin couples form a nearly isopotential group clustered around -250 mV. Reduction of the flavins by the pyridine nucleotide couple at -325 mV is thus moderately thermodynamically favorable. The ferri/ferroheme couple in all three isoforms is approximately -270 mV in the presence of saturating arginine. Ca(2+)/calmodulin has no effect on the potentials of any of the couples in endothelial nitric-oxide synthase (eNOS) or neuronal nitric-oxide synthase (nNOS). The pH dependence of the flavin couples suggests the presence of ionizable groups coupled to the flavin redox/protonation states.  相似文献   

15.
Cytochrome p450BM3 is a self-sufficient fatty acid monooxygenase consisting of a diflavin (FAD/FMN) reductase domain and a heme domain fused together in a single polypeptide chain. The multidomain structure makes it an ideal model system for studying the mechanism of electron transfer and for understanding p450 systems in general. Here we report the redox properties of the cytochrome p450BM3 wild-type holoenzyme, and its isolated FAD reductase and p450 heme domains, when immobilized in a didodecyldimethylammonium bromide film cast on an edge-plane graphite electrode. The holoenzyme showed cyclic voltammetric peaks originating from both the flavin reductase domain and the FeIII/FeII redox couple contained in the heme domain, with formal potentials of -0.388 and -0.250 V with respect to a saturated calomel electrode, respectively. When measured in buffer solutions containing the holoenzyme or FAD-reductase domain, the reductase response could be maintained for several hours as a result of protein reorganization and refreshing at the didodecyldimethylammonium modified surface. When measured in buffer solution alone, the cyclic voltammetric peaks from the reductase domain rapidly diminished in favour of the heme response. Electron transfer from the electrode to the heme was measured directly and at a similarly fast rate (ks' = 221 s-1) to natural biological rates. The redox potential of the FeIII/FeII couple increased when carbon monoxide was bound to the reduced heme, but when in the presence of substrate(s) no shift in potential was observed. The reduced heme rapidly catalysed the reduction of oxygen to hydrogen peroxide.  相似文献   

16.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

17.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

18.
The crystal structure of the neuronal nitric-oxide synthase (nNOS) NADPH/FAD binding domain indicated that Ser-1176 is within hydrogen bonding distance of Asp-1393 and the O4 atom of FAD and is also near the N5 atom of FAD (3.7 A). This serine residue is conserved in most of the ferredoxin-NADP+ reductase family of proteins and is important in electron transfer. In the present study, the homologous serines of both nNOS (Ser-1176) and endothelial nitric-oxide synthase (eNOS) (Ser-942) were mutated to threonine and alanine. Both substitutions yielded proteins that exhibited decreased rates of electron transfer through the flavin domains, in the presence and absence of Ca2+/CaM, as measured by reduction of potassium ferricyanide and cytochrome c. Rapid kinetics measurements of flavin reduction of all the mutants also showed a decrease in the rate of flavin reduction, in the absence and presence of Ca2+/CaM, as compared with the wild type proteins. The serine to alanine substitution caused both nNOS and eNOS to synthesize NO more slowly; however, the threonine mutants gave equal or slightly higher rates of NO production compared with the wild type enzymes. The midpoint redox potential measurements of all the redox centers revealed that wild type and threonine mutants of both nNOS and eNOS are very similar. However, the redox potentials of the FMN/FMNH* couple for alanine substitutions of both nNOS and eNOS are >100 mV higher than those of wild type proteins and are positive. These data presented here suggest that hydrogen bonding of the hydroxyl group of serine or threonine with the isoalloxazine ring of FAD and with the amino acids in its immediate milieu, particularly nNOS Asp-1393, affects the redox potentials of various flavin states, influencing the rate of electron transfer.  相似文献   

19.
NADPH-cytochrome P450 reductase transfers two reducing equivalents derived from a hydride ion of NADPH via FAD and FMN to the large family of microsomal cytochrome P450 monooxygenases in one-electron transfer steps. The mechanism of electron transfer by diflavin reductases remains elusive and controversial. Here, we determined the crystal structure of truncated yeast NADPH-cytochrome P450 reductase, which is functionally active toward its physiological substrate cytochrome P450, and discovered a second FMN binding site at the interface of the connecting and FMN binding domains. The two FMN binding sites have different accessibilities to the bulk solvent and different amino acid environments, suggesting stabilization of different electronic structures of the reduced flavin. Since only one FMN cofactor is required for function, a hypothetical mechanism of electron transfer is discussed that proposes shuttling of a single FMN between these two sites coupled with the transition between two semiquinone forms, neutral (blue) and anionic (red).  相似文献   

20.
Flavocytochrome P450 BM3 is a member of the diflavin reductase enzyme family. Members include cytochrome P450 reductase, nitric-oxide synthase, methionine synthase reductase, and novel oxidoreductase 1. These enzymes show a strong preference for NADPH over NADH as reducing coenzyme. An aromatic residue stacks over the FAD isoalloxazine ring in each enzyme, and in some cases it is important in controlling coenzyme specificity. In P450 BM3, the aromatic residue inferred from sequence alignments to stack over the FAD is Trp-1046. Mutation to Ala-1046 and His-1046 effected a remarkable coenzyme specificity switch. P450 BM3 W1046A/W106H FAD and reductase domains are efficient NADH-dependent ferricyanide reductases with selectivity coefficients (k(cat)/K(m)(NADPH)/k(cat)/K(m)(NADH)) of 1.5, 67, and 8571 for the W1046A, W1046H, and wild-type reductase domains, respectively. Stopped-flow photodiode array absorption studies indicated a charge-transfer intermediate accumulated in the W1046A FAD domain (and to a lesser extent in the W1046H FAD domain) and was attributed to formation of a reduced FADH(2)-NAD(P)(+) charge-transfer species, suggesting a relatively slow rate of release of NAD(P)(+) from reduced enzymes. Unlike wild-type enzymes, there was no formation of the blue semiquinone species observed during reductive titration of the W0146A/W146H FAD and reductase domains with dithionite or NAD(P)H. This was a consequence of elevation of the semiquinone/hydroquinone couple of the FAD with respect to the oxidized/semiquinone couple, and a concomitant approximately 100-mV elevation in the 2-electron redox couple for the enzyme-bound FAD (-320, -220, and -224 mV in the wild-type, W1046A, and W1046H FAD domains, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号