首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Escherichia coli glutaredoxin (85 amino acid residues, Mr = 9100), the glutathione-dependent hydrogen donor for ribonucleotide reductase, was purified from an inducible lambda PL, expression system both with a natural isotope content and with uniform 15N labelling. This material was used for obtaining sequence-specific 1H magnetic resonance assignments and the identification of regular secondary structures in the oxidized form of the protein, which contains the redox-active disulfide Cys11-Pro-Tyr-Cys14. Oxidized glutaredoxin contains a four-stranded beta-sheet, with the peripheral strand 32-37 arranged parallel to the strand 2-7, which further combines with the two additional strands 61-64 and 67-69 in an antiparallel fashion. The protein further contains three helices extending approximately from residues 13-28, 45-54 and 72-84.  相似文献   

2.
Staphylococcal nuclease: sequential assignments and solution structure   总被引:4,自引:0,他引:4  
D A Torchia  S W Sparks  A Bax 《Biochemistry》1989,28(13):5509-5524
Sequential assignments are reported for backbone 15N and 1H of nearly all residues of staphylococcal nuclease (Nase) complexed with thymidine 3',5'-diphosphate and Ca2+. Because of the relatively large size of the Nase ternary complex, Mr 18K, the crucial element of our assignment strategy was the use of isotope-edited two-dimensional NMR spectra, particularly 15N-edited nuclear Overhauser enhancement spectroscopy (NOESY), 15N-edited J-correlated spectroscopy (COSY), and 1H/15N or 1H/13C heteronuclear multiple quantum shift correlation spectroscopy (HMQC). These experiments, together with the more conventional NOESY, COSY, and homonuclear Hartmann-Hahn spectra of natural abundance or deuteriated samples, yielded backbone assignments of 127 of the 136 residues in the structured part of the protein. Using the NOESY data, we identified three helical domains and several beta-sheets which were in close correspondence with secondary structure identified in the crystal structure. Moreover, many long-range NOESY connectivities were identified that were in agreement with distances derived from the crystal structure. The region of the sequence in the neighborhood of residue 50 appears to be more flexible and disordered in solution than in the crystal. Very slowly exchanging amide protons are those found to be hydrogen bonded in the crystal structure; however, even hydrogen-bonded amides located within similar types of regular secondary structures, e.g., alpha-helices, exchange with greatly different rates.  相似文献   

3.
The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of greater than 95% for the protein expressed in yeast. Five independent sequential connectivity pathways via one-, two-, and three-bond heteronuclear J couplings are exploited to obtain unambiguous sequential assignments. Specifically, CO(i)-N(i + 1),NH(i + 1) correlations are observed in the HNCO experiment, the C alpha H(i), C alpha (i)-N(i + 1) correlations in the HCA(CO)N experiment, the C alpha(i)-N(i + 1),NH(i + 1) correlations in the HNCA and HN(CO)CA experiments, the C alpha H(i)-N(i + 1),NH(i + 1) correlations in the H(CA)NH and HN(CO)HB experiments, and the C beta H(i)-N(i + 1),NH(i + 1) correlations in the HN(CO)HB experiments. The backbone intraresidue C alpha H(i)-15N(i)-NH(i) correlations are provided by the 15N-edited Hartmann-Hahn (HOHAHA) and H(CA)NH experiments, the C beta H(i)-15N(i)-NH(i) correlations by the 15N-edited HOHAHA and HNHB experiments, the 13C alpha(i)-15N(i)-NH(i) correlations by the HNCA experiment, and the C alpha H(i)-13C alpha(i)-13CO(i) correlations by the HCACO experiment. Aliphatic side-chain spin systems are assigned by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and total correlated (HCCH-TOCSY) spectroscopy. Because of the high resolution afforded by these experiments, as well as the availability of multiple sequential connectivity pathways, ambiguities associated with the limited chemical shift dispersion associated with helical proteins are readily resolved. Further, in the majority of cases (88%), four or more sequential correlations are observed between successive residues. Consequently, the interpretation of these experiments readily lends itself to semiautomated analysis which significantly simplifies and speeds up the assignment process. The assignments presented in this paper provide the essential basis for studies aimed at determining the high-resolution three-dimensional structure of IL-4 in solution.  相似文献   

4.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

5.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) of Escherichia coli. Virtually complete (98%) backbone 1H, 15N, and 13C nuclear magnetic resonance (NMR) signal assignments were determined by using a battery of triple-resonance three-dimensional (3D) NMR pulse sequences. In addition, nearly complete (1H, 95%; 13C, 85%) side-chain 1H and 13C signal assignments were obtained from an analysis of 3D 13C HCCH-COSY and HCCH-TOCSY spectra. These experiments rely almost exclusively upon one- and two-bond J couplings to transfer magnetization and to correlate proton and heteronuclear NMR signals. Hence, essentially complete signal assignments of this 168-residue protein were made without any assumptions regarding secondary structure and without the aid of a crystal structure, which is not yet available. Moreover, only three samples, one uniformly 15N-enriched, one uniformly 15N/13C-enriched, and one containing a few types of amino acids labeled with 15N and/or 13C, were needed to make the assignments. The backbone assignments together with the 3D 15N NOESY-HMQC and 13C NOESY-HMQC data have provided extensive information about the secondary structure of this protein [Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y., & Roseman, S (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3479-3488]. The nearly complete set of backbone and side-chain atom assignments reported herein provide a basis for studies of the three-dimensional structure and dynamics of IIIGlc as well as its interactions with a variety of membrane and cytoplasmic proteins.  相似文献   

6.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

7.
4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied.  相似文献   

8.
Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197].  相似文献   

9.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

10.
The hnRNP C1 and C2 proteins are abundant nuclear proteins that bind avidly to heterogeneous nuclear RNAs (hnRNAs) and appear to be involved with pre-mRNA processing. The RNA-binding activity of the hnRNP C proteins is contained in the amino-terminal 94 amino acid RNA-binding domain (RBD) that is identical for these two proteins. We have obtained the 1H, 13C, and 15N NMR assignments for the RBD of the human hnRNP C proteins. The assignment process was facilitated by extensive utilization of three- and four-dimensional heteronuclear-edited spectra. Sequential assignments of the backbone resonances were made using a combination of 15N-edited 3D NOESY-HMQC, 3D TOCSY-HMQC, and 3D TOCSY-NOESY-HSQC as well as 3D HNCA, HNCO, and HCACO spectra. Side-chain resonances were assigned using 3D HCCH-COSY and 3D HCH-TOCSY spectra. Four-dimensional 13C/13C-edited NOESY and 13C/15N-edited NOESY experiments were used to unambigously resolve NOEs. The overall global folding pattern was established by calculating a set of preliminary structures using constraints derived from the sequential NOEs and a small number of long-range NOEs. The beta alpha beta-beta alpha beta domain structure exhibits an antiparallel beta-sheet with the conserved RNP 1 and RNP 2 sequences [Dreyfuss et al. (1988) Trends Biochem. Sci. 13, 86-91] located adjacent to one another as the two inner strands of the beta-sheet.  相似文献   

11.
Spo0F, sporulation stage 0 F protein, a 124-residue protein responsible, in part, for regulating the transition of Bacillus subtilis from a vegetative state to a dormant endospore, has been studied by high-resolution NMR. The 1H, 15N, and 13C chemical shift assignments for the backbone residues have been determined from analyses of 3D spectra, 15N TOCSY-HSQC, 15N NOESY-HSQC, HNCA, and HN(CO)CA. Assignments for many sidechain proton resonances are also reported. The secondary structure, inferred from short- and medium-range NOEs, 3JHN alpha coupling constants, and hydrogen exchange patterns, define a topology consistent with a doubly wound (alpha/beta)5 fold. Interestingly, comparison of the secondary structure of Spo0F to the structure of the Escherichia coli response regulator, chemotaxis Y protein (CheY) (Volz K, Matsumura P, 1991, J Biol Chem 266:15511-15519; Bruix M et al., 1993, Eur J Biochem 215:573-585), show differences in the relative length of secondary structure elements that map onto a single face of the tertiary structure of CheY. This surface may define a region of binding specificity for response regulators. Magnesium titration of Spo0F, followed by amide chemical shift changes, gives an equilibrium dissociation constant of 20 +/- 5 mM. Amide resonances most perturbed by magnesium binding are near the putative site of phosphorylation, Asp 54.  相似文献   

12.
The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible.  相似文献   

13.
The alpha subunit of tryptophan synthase (alphaTS) from S. typhimurium belongs to the triosephosphate isomerase (TIM) or the (beta/alpha)(8) barrel fold, one of the most common structures in biology. To test the conservation of the global fold in the isolated Escherichia coli homolog, we have obtained a majority of the backbone assignments for the 29-kD alphaTS by using standard heteronuclear multidimensional NMR methods on uniformly (15)N- and (15)N/(13)C-labeled protein and on protein selectively (15)N-labeled at key hydrophobic residues. The secondary structure mapped by chemical shift index, nuclear Overhauser enhancements (NOEs), and hydrogen-deuterium (H-D) exchange, and several abnormal chemical shifts are consistent with the conservation of the global TIM barrel fold of the isolated E. coli alphaTS. Because most of the amide protons that are slow to exchange with solvent correspond to the beta-sheet residues, the beta-barrel is likely to play an important role in stabilizing the previously detected folding intermediates for E. coli alphaTS. A similar combination of uniform and selective labeling can be extended to other TIM barrel proteins to obtain insight into the role of the motif in stabilizing what appear to be common partially folded forms.  相似文献   

14.
1H, 13C, and 15N NMR assignments of the protein backbone of human interferon-gamma, a homodimer of 31.4 kDa, have been made using the recently introduced three-dimensional (3D) triple-resonance NMR techniques. It is shown that, despite the approximately 40-50-Hz 13C alpha and 1H alpha line widths of this high molecular weight dimer and the extensive overlap in the 1H alpha and 13C alpha spectral regions, unique sequential assignments can be made on the basis of combined use of the 3D HNCO, HNCA, HN(CO)CA, and HCACO constant-time experiments, the 15N-separated 3D NOESY-HMQC, and the 3D HOHAHA-HMQC experiments. Analysis of the 15N-separated 3D NOESY-HMQC and 13C/15N-separated four-dimensional (4D) NOESY-HMQC spectra together with the secondary C alpha and C beta chemical shifts yielded extensive secondary structure information. The NMR-derived secondary structure essentially confirms results of a recently published low-resolution crystal structure [Ealick et al. (1991) Science 252, 698-702], i.e., six helices in the monomer which are mostly alpha-helical in nature, no beta-sheets, a long flexible loop between helices A and B, and a very hydrophobic helix C. The functionally important carboxy terminus, which was not observed in the X-ray study, does not adopt a rigid conformation in solution. A high degree of internal mobility, starting at Pro-123, gives rise to significantly narrower resonance line widths for these carboxy-terminal residues compared to the rest of the protein.  相似文献   

15.
Protocols have been developed and applied for the high-throughput production of [U-15N]- or [U-13C-, U-15N]-labeled proteins using the conditional methionine auxotroph Escherichia coli B834. The large-scale growth and expression uses a chemically defined auto-induction medium containing salts and trace metals, vitamins including vitamin B12, and glucose, glycerol, and lactose. The results from nine expression trials in 2-L of the auto-induction medium (500 mL in each of four polyethylene terephthalate beverage bottles) gave an average final optical density at 600 nm of approximately 5, an average wet cell mass yield of approximately 9.5 g L(-1), and an average yield of approximately 20 mg of labeled protein in the six instances in which proteolysis of the fusion protein was observed. Correlations between the cell mass recovered, the level of protein expression, and the relative amounts of glucose, glycerol, and lactose in the auto-induction medium were noted. Mass spectral analysis showed that the purified proteins contained both 15N and 13C at levels greater than 95%. 1H-15N heteronuclear single quantum correlation spectroscopy as well as 13C; 15N-edited spectroscopy showed that the purified [U-15N]- and [U-13C, U-15N]-labeled proteins were suitable for structure analysis.  相似文献   

16.
Cytochrome c-550 of Thiobacillus versutus functions as an electron transfer protein in a chain of redox proteins that enables T. versutus to grow on methylamine. It is a single-heme protein of 134 residues, related to mitochondrial cytochrome c. Cytochrome c-550, as well as several other bacterial c2-type cytochromes, contain a C-terminal extension of 13-16 amino acids of unknown function, compared to mitochondrial cytochrome c. NMR experiments were performed to obtain structural and dynamic information on the protein in solution. For this purpose, T. versutus cytochrome c-550 was labeled with 15N and 13C using 13C-methanol grown Paracoccus denitrificans as a host for heterologous expression. NMR assignments were obtained for the 1H, 15N, and 13C nuclei in the backbone and the beta-positions of the protein and the secondary structure was determined. 15N-relaxation studies were performed to characterize the dynamic properties of the protein. The results indicate that the main part of T. versutus ferrocytochrome c-550 exists in solution as a rigid, well-ordered molecule with a secondary structure that is very similar to that of P. denitrificans cytochrome c-550, as observed in crystals. The C-terminal extension, however, is unstructured and highly mobile. The possible origin and function of the extension are discussed.  相似文献   

17.
Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione.  相似文献   

18.
The 55 residue C-terminal domain of UvrB that interacts with UvrC during excision repair in Escherichia coli has been expressed and purified as a (His)6 fusion construct. The fragment forms a stable folded domain in solution. Heteronuclear NMR experiments were used to obtain extensive 15N, 13C and 1H NMR assignments. NOESY and chemical shift data showed that the protein comprises two helices from residues 630 to 648 and from 652 to 670. 15N relaxation data also show that the first 11 and last three residues are unstructured. The effective rotational correlation time within the structured region is not consistent with a monomer. This oligomerisation may be relevant to the mode of dimerisation of UvrB with the homologous domain of UvrC.  相似文献   

19.
Summary Essentially complete backbone and side-chain 1H, 15N and 13C resonance assignments for the 185-aminoacid cytokine interleukin-6 (IL-6) are presented. NMR experiments were performed on uniformly [15N]-and [15N, 13C]-labeled recombinant human IL-6 (rIL-6) using a variety of heteronuclear NMR experiments. A combination of 13C-chemical shift, amide hydrogen-bond exchange, and 15N-edited NOESY data allowed for analysis of the secondary structure of IL-6. The observed secondary structure of IL-6 is composed of loop regions connecting five -helices, four of which are consistent in their length and disposition with the four-helix bundle motif present in other related cytokines and previously postulated for IL-6. In addition, the topology of the overall fold was found to be consistent with a left-handed up-up-down-down four-helix bundle based on a number of long-range interhelical NOEs. The results presented here provide deeper insight into structure-function relationships among members of the four-helix bundle family of proteins.  相似文献   

20.
Samples of staphylococcal nuclease H124L (cloned protein overproduced in Escherichia coli whose sequence is identical with that of the nuclease isolated from the V8 strain of Staphylococcus aureus) were labeled uniformly with carbon-13 (26% ul 13C), uniformly with nitrogen-15 (95% ul 15N), and specifically by incorporating nitrogen-15-labeled leucine ([98% 15N]Leu) or carbon-13-labeled lysine ([26% ul 13C]Lys), arginine ([26% ul 13C]Arg), or methionine ([26% ul 13C]Met). Solutions of the ternary complexes of these analogues (nuclease H124L-pdTp-Ca2+) at pH 5.1 (H2O) or pH* 5.5 (2H2O) at 45 degrees C were analyzed as appropriate to the labeling pattern by multinuclear two-dimensional (2D) NMR experiments at spectrometer fields of 14.09 and 11.74 T: 1H-13C single-bond correlation (1H[13C]SBC); 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE); 1H-13C single-bond correlation with Hartmann-Hahn relay (1H-[13C]SBC-HH); 1H-13C multiple-bond correlation (1H[13C]MBC); 1H-15N single-bond correlation (1H-[15N]SBC); 1H-15N single-bond correlation with NOE relay (1H[15N]SBC-NOE). The results have assisted in spin system assignments and in identification of secondary structural elements. Nuclear Overhauser enhancements (NOE's) characteristic of antiparallel beta-sheet (d alpha alpha NOE's) were observed in the 1H [13C]-SBC-NOE spectrum of the nuclease ternary complex labeled uniformly with 13C. NOE's characteristic of alpha-helix (dNN NOE's) were observed in the 1H[15N]SBC-NOE spectrum of the complex prepared from protein labeled uniformly with 15N. The assignments obtained from these multinuclear NMR studies have confirmed and extended assignments based on 1H[1H] 2D NMR experiments [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry (preceding paper in this issue)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号