首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the distribution of fungal communities in aquatic habitats in tropical regions and highlights differences in the taxa observed in freshwater and marine habitats. Ascomycetes are dominant on substrata in marine environments, with few basidiomycetes and discomycetes. Equally, few freshwater basidiomycetes and discomycetes have been reported from the tropics. In marine habitats, Dothideomycetes dominate on mangrove substrata, and halosphaeriaceous species are most numerous on submerged woody substrata in coastal waters, while yeasts are common in seawater and estuarine habitats. In freshwater, Ingoldian anamorphic fungi are most numerous on decaying leaves, while ascomycetes (Dothideomycetes, Sordariomycetes) are prevalent on submerged/exposed woody substrata. Unique fungi are found in tropical waters and differ from those in temperate locations.  相似文献   

2.
The taxonomic composition of marine mycelial fungi was determined in the interstitial habitats of the Vostok Bay littoral (Peter the Great Bay, the Sea of Japan). A total of 39 species of ascomycetes and anamorphic fungi were detected and identified. The predominant species of the intertidal zone were Corollospora maritima, C. lacera, Carbosphaerella leptosphaerioides, Arenariomyces trifurcatus (Ascomycota), Alternaria alternata, Scolecobasidium arenarium, and Zalerion maritimum (anamorphic fungi). The complete list of species of obligately marine ascomycetes and anamorphic fungi from the interstitial habitats of the Vostok Bay littoral is presented for the first time  相似文献   

3.
Endophytic fungi were isolated from the stems, petioles, midribs, and leaves of seedlings of six native tree species collected from Doi Suthep-Pui National Park, Thailand. Endophytes were isolated from all tissue samples investigated, and taxa included five ascomycetes, eight anamorphic taxa, and numerous sterile mycelia. Twenty-six strains were tested for their ability to produce cellulase, mannanase, proteinase, and xylanase. The ability to produce these enzymes was distributed amongst the strains tested. Rainforest seedlings supported a diverse array of endophytes that have a wide range of enzymatic activities. The implication of enzyme production in relation to lifestyle abilities of the endophytes is discussed.  相似文献   

4.
Although fungi are known to colonize and decompose plant tissues in various environments, there is scanty information on fungal communities on wetland plants, their relation to microhabitat conditions, and their link to plant litter decomposition. We examined fungal diversity and succession on Phragmites australis leaves both attached to standing shoots and decaying in the litter layer of a brackish tidal marsh. Additionally, we followed changes in fungal biomass (ergosterol), leaf nitrogen dynamics, and litter mass loss on the sediment surface of the marsh. Thirty-five fungal taxa were recorded by direct observation of sporulation structures. Detrended correspondence analysis and cluster analysis revealed distinct communities of fungi sporulating in the three microhabitats examined (middle canopy, top canopy, and litter layer), and indicator species analysis identified a total of seven taxa characteristic of the identified subcommunities. High fungal biomass developed in decaying leaf blades attached to standing shoots, with a maximum ergosterol concentration of 548 ± 83 μg g–1 ash-free dry mass (AFDM; mean ± SD). When dead leaves were incorporated in the litter layer on the marsh surface, fungi experienced a sharp decline in biomass (to 191 ± 60 μg ergosterol g–1 AFDM) and in the number of sporulation structures. Following a lag phase, species not previously detected began to sporulate. Leaves placed in litter bags on the sediment surface lost 50% of their initial AFDM within 7 months (k = −0.0035 day–1) and only 21% of the original AFDM was left after 11 months. Fungal biomass accounted for up to 34 ± 7% of the total N in dead leaf blades on standing shoots, but to only 10 ± 4% in the litter layer. These data suggest that fungi are instrumental in N retention and leaf mass loss during leaf senescence and early aerial decay. However, during decomposition on the marsh surface, the importance of living fungal mass appears to diminish, particularly in N retention, although a significant fraction of total detrital N may remain associated with dead hyphae.  相似文献   

5.
Fungi associated with the decomposition of Nypa fruticans in Malaysia are under investigation. Forty-one fungi have been identified including 35 ascomycetes, four mitosporic fungi and two basidiomycetes. The distribution of intertidal fungi on palm structures including leaves, leaf veins, rachides, petiole bases, and inflorescences, and fungi on terrestrial parts have also been examined. No fungi were found on the leaf material, although several fungi were found on the leaf midribs, and possible reasons for this are given. Very few taxa developed on the inflorescences, but those that were present were abundant. The greatest density of fruiting structures occurred on the rachides, and the greatest diversity of fungal species occurred on the petiole bases. The terrestrial fungi differed from the intertidal fungi, although Linocarpon nipae occurred in both habitats. Reasons for the differences in fungal numbers and diversity on the various palm parts are discussed. The diversity of fungi at Morib mangrove was low when compared to previous studies on fungi on Nypa palm at Kampong Api Api in Brunei and in this study at Kuala Selangor mangrove in Malaysia.  相似文献   

6.
We conducted a 12-week field manipulation experiment in which we raised the nitrogen availability (ammonium sulfate fertilization to roots) and/or water potential (freshwater misting) of decaying leaf blades of a saltmarsh grass (smooth cordgrass, Spartina alterniflora) in triplicate 11-m2 plots, and compared the manipulated plots to unmanipulated, control plots. The ascomycetous fungi that dominate cordgrass leaf decomposition processes under natural conditions exhibited a boosting (>2-fold) of living standing crop (ergosterol content) by misting at the 1 st week after tagging of senescent leaves, but afterwards, living-fungal standing crop on misted blades was equivalent to that on control blades, confirming prior evidence that Spartina fungi are well adapted to natural, irregular wetting. Misting also caused 2-fold sharper temporal declines than control in instantaneous rates of fungal production (ergosterol synthesis), 5-fold declines in density of sexual reproductive structures that were not shown by controls, and 2-fold higher rates of loss of plant organic mass. Extra nitrogen gave a long-term boost to living-fungal standing crop (about 2-fold at 12 weeks), which was also reflected in rates of fungal production at 4 weeks, suggesting that saltmarsh fungal production is nitrogen-limited. Although bacterial and green-microalgal crops were boosted by manipulations of nitrogen and/or water, their maximal crops remained 0.3 or 2% (bacteria or green microalgae, respectively) of contemporaneous living-fungal crop. The fungal carbon-productivity values obtained, in conjunction with rates of loss of plant carbon, hinted that fungal yield can be high (>50%), and that it is boosted by high availability of nitrogen. We speculate that one partial cause of high fungal yield could be subsidy of fungal growth by dissolved organic carbon from outside decomposing leaves.  相似文献   

7.
Three species of saltmarsh ascomycetes were grown in the presence of all of the constituents of their natural substrate (leaves of cordgrass) or were presented only with aqueous extracts of the leaves. These two growth-condition treatments had no significant effect on total ergosterol content of the fungal mycelia, contrary to an earlier hypothesis that availability of plant lipids would lower fungal ergosterol contents. Mycelial content of free ergosterol was about twice as variable as that for total (free plus esterified) ergosterol. Total ergosterol (data pooled for all species) was strongly correlated to organic mycelial mass (r2 = 0.43, P < 0.00001, and slope = 4.59 μg of ergosterol mg of organic mass-1).  相似文献   

8.
Aquatic hyphomycetes dominate leaf decomposition in streams, and their biomass is an important component in the diet of leaf-eating invertebrates. After 2 weeks of exposure in a first-order stream, maple leaf disks had low levels of fungal biomass and species diversity. Spore production by aquatic hyphomycetes also was low. Subsets of these disks were left in the stream for another 3 weeks or incubated in defined mineral solutions with one of three levels of nitrate and phosphate. Stream disks lost mass, increased ergosterol levels and spore production, and were colonized by additional fungal species. External N and P significantly stimulated mass loss, ergosterol accumulation, and spore production of laboratory disks. On disks incubated without added N and P, ergosterol levels declined while conidium production continued, suggesting conversion of existing hyphal biomass to propagules. In all other treatments, approximately equal amounts of newly synthesized biomass were invested in hyphae and conidia. Net yield (fungal biomass per leaf mass lost) varied between 1% (in the laboratory, without added N or P) and 31% (decay in stream). In most treatments, the three aquatic hyphomycete species that dominated spore production during the first 2 weeks in the stream also produced the largest numbers of conidia in the following 3 weeks. Principal-component analysis suggested two divergent trends from the initial fungal community established after 2 weeks in the stream. One culminated in the community of the second phase of stream exposure, and the other culminated in the laboratory treatment with the highest levels of N and P. The results suggest that fungal production in streams, and, by extension, production of invertebrates and higher tropic levels, is stimulated by inorganic N and P.  相似文献   

9.
ATP and ergosterol were compared as indicators of fungal biomass associated with leaves decomposing in laboratory microcosms and streams. In all studies, the sporulation rates of the fungi colonizing leaves were also determined to compare patterns of fungal reproductive activity with patterns of mycelial growth. During leaf degradation, ATP concentrations exhibited significant, positive correlations with ergosterol concentrations in the laboratory and when leaves had been air dried prior to being submerged in a stream. However, when freshly shed leaves were submerged in a stream, concentrations of ATP and ergosterol were negatively correlated during degradation. This appeared to be due to the persistence of leaf-derived ATP in freshly shed leaves during the first 1 to 2 weeks in the stream. Estimates of fungal biomass from ergosterol concentrations of leaf litter were one to three times those calculated from ATP concentrations. ATP, ergosterol, and sporulation data generally provided similar information about the fungi associated with decomposing leaves in streams during periods when fungi were growing. Ergosterol concentrations provide a more accurate indication of fungal biomass in situations in which other organisms make significant contributions to ATP pools.  相似文献   

10.
The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees.  相似文献   

11.
Samples of leaves of red mangrove (Rhizophora mangle) were incubated on an agar medium selective for pythiaceous oomycetes. Leaves on trees above the water did not contain oomycetes. Marine oomycetes, principally Phytophthora vesicula, had colonized leaves within 2 h of leaf submergence, probably finding them by chemotaxis. The frequency of occurrence of P. vesicula in submerged leaves reached 100% within 30 h of submergence. By 43 h most, if not all, parts of leaves were occupied, and surface treatment with a biocide indicated that leaves were occupied internally. Frequencies of P. vesicula remained near 100% through about 2 weeks of submergence and then declined to about 60% in older (≥4 weeks) leaves. Leaves of white mangrove (Laguncularia racemosa) were also extensively occupied by P. vesicula after falling into the water column, but decaying leaves of turtlegrass (Thalassia testudinum) were not colonized by oomycetes. Ergosterol analysis indicated that the standing crop of living, non-oomycete (ergosterol-containing) fungal mass in submerged red-mangrove leaves did not rise above that which had been present in senescent leaves on the tree; decaying turtlegrass leaves had an ergosterol content that was only about 2% of the maximum concentration detected for red-mangrove leaves. These results suggest that oomycetes are the predominant mycelial eucaryotic saprotrophs of mangrove leaves that fall into the water column and that for turtlegrass leaves which live, die, and decompose under submerged conditions, mycelial eucaryotes make no substantial contribution to decomposition.  相似文献   

12.
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

13.
About 174 endophytic fungi were isolated from the pharmaceutical plant, Camptotheca acuminata. Of the 18 taxa obtained, non-sporulating fungi (48.9%), Alternaria (12.6%), Phomopsis (6.9%), Sporidesmium (6.3%), Paecilomyces (4.6%) and Fusarium (4.6%) were dominant. ITS rDNA assay indicated that most of the non-sporulating fungi belonged to the Pyrenomycetes and Loculoascomycetes ascomycetes or their anamorph Coelomycetes. The results of the bioactivity test showed that 27.6% of the endophytic fungi displayed inhibition against more than one indicator microorganism. 4.0% and 2.3% of the endophytic fungi showed cytotoxicity and protease inhibition, respectively. The endophytic fungi with bioactivities were distributed in more than 12 taxa including non-sporulating fungi, which are reliable sources for bioactive agents.  相似文献   

14.
D. M. Alongi 《Oecologia》1987,71(4):537-540
Summary Mangrove-derived tannins negatively effected laboratory-reared nematode populations and natural communities of meiobenthos in tropical mangrove forests along the northeastern coast of Australia. In the low and mid intertidal zones of five mangrove estuaries, nearly all of the dominant meiofaunal taxa correlated negatively with concentrations of sediment tannins. Only nematodes correlated with low tannin concentrations in the high intertidal zones. The negative exponential equation y=be -mx represented the best-fit for most of the meiofauna-tannin relationships. The mangrove-dwelling nematode, Terschellingia longicaudata did not grow (r=0.001) in the laboratory on fresh, tannin-rich leaves of the red mangrove, Rhizophora stylosa. Population growth of the nematode was significantly greater on fresh, tannin-poor leaves of the grey mangrove, Avicennia marina (r=0.081) with best growth (r=0.112) attained on a diet of tannin-free, mixed cereal. These preliminary field and laboratory results suggest that hydrolyzable tannins leached from mangrove roots and leaf litter are an important factor regulating intertidal meiobenthic communities in tropical mangrove forests along the northeastern Australian coast.  相似文献   

15.
Aquatic hyphomycetes dominate leaf decomposition in streams, and their biomass is an important component in the diet of leaf-eating invertebrates. After 2 weeks of exposure in a first-order stream, maple leaf disks had low levels of fungal biomass and species diversity. Spore production by aquatic hyphomycetes also was low. Subsets of these disks were left in the stream for another 3 weeks or incubated in defined mineral solutions with one of three levels of nitrate and phosphate. Stream disks lost mass, increased ergosterol levels and spore production, and were colonized by additional fungal species. External N and P significantly stimulated mass loss, ergosterol accumulation, and spore production of laboratory disks. On disks incubated without added N and P, ergosterol levels declined while conidium production continued, suggesting conversion of existing hyphal biomass to propagules. In all other treatments, approximately equal amounts of newly synthesized biomass were invested in hyphae and conidia. Net yield (fungal biomass per leaf mass lost) varied between 1% (in the laboratory, without added N or P) and 31% (decay in stream). In most treatments, the three aquatic hyphomycete species that dominated spore production during the first 2 weeks in the stream also produced the largest numbers of conidia in the following 3 weeks. Principal-component analysis suggested two divergent trends from the initial fungal community established after 2 weeks in the stream. One culminated in the community of the second phase of stream exposure, and the other culminated in the laboratory treatment with the highest levels of N and P. The results suggest that fungal production in streams, and, by extension, production of invertebrates and higher tropic levels, is stimulated by inorganic N and P.  相似文献   

16.
To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87–93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.  相似文献   

17.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

18.
The effect of zinc on leaf decomposition by aquatic fungi was studied in microcosms. Alder leaf disks were precolonized for 15 days at the source of the Este River and exposed to different zinc concentrations during 25 days. Leaf mass loss, fungal biomass (based on ergosterol concentration), fungal production (rates of [1-14C]acetate incorporation into ergosterol), sporulation rates, and species richness of aquatic hyphomycetes were determined. At the source of the Este River decomposition of alder leaves was fast and 50% of the initial mass was lost in 25 days. A total of 18 aquatic hyphomycete species were recorded during 42 days of leaf immersion. Articulospora tetracladia was the dominant species, followed by Lunulospora curvula and two unidentified species with sigmoid conidia. Cluster analysis suggested that zinc concentration and exposure time affected the structure of aquatic hyphomycete assemblages, even though richness had not been severely affected. Both zinc concentration and exposure time significantly affected leaf mass loss, fungal production and sporulation, but not fungal biomass. Zinc exposure reduced leaf mass loss, inhibited fungal production and affected fungal reproduction by either stimulating or inhibiting sporulation rates. The results of this work suggested zinc pollution might depress leaf decomposition in streams due to changes in the structure and activity of aquatic fungi.  相似文献   

19.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

20.
The subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota) is an assemblage of ecologically diverse species, ranging from mutualistic lichenised fungi to human opportunistic pathogens. Recent contributions from molecular studies have changed our understanding of the composition of this subclass. Among others, ant-associated fungi, deep-sea fungi and bryophilous fungi were also shown to belong to this group of ascomycetes. The delimitation of orders and families within this subclass has not previously been re-assessed using a broad phylogenetic study and the phylogenetic position of some taxa such as the lichenised family Celotheliaceae or the Chaetothyrialean bryophilous fungi is still unclear. In our study, we assemble new and published sequences from 132 taxa and reconstruct phylogenetic relationships using four markers (nuLSU, nuSSU, mtSSU and RPB1). Results highlight several shortfalls in the current classification of this subclass, mainly due to un-assigned paraphyletic taxa. The family Epibryaceae is therefore described to circumscribe a previously un-assigned lineage. Celotheliales ad int. is suggested for the lineage including the lichen genus Celothelium and various plant pathogens. The delimitation of the family Trichomeriaceae is also broadened to include the genus Knufia and some anamorphic taxa. As defined here, Chaetothyriomycetidae includes four orders (Celotheliales ad int., Chaetothyriales, Pyrenulales, and Verrucariales) and ten families (Adelococcaceae, Celotheliaceae, Chaetothyriaceae, Cyphellophoraceae, Epibryaceae fam. nov., Herpotrichiellaceae, Pyrenulaceae, Requienellaceae, Trichomeriaceae, and Verrucariaceae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号