首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usually based on first order chemical reactions (exponential decay), underestimating the long-term emissions of landfills. The presented study concentrated on the curve fitting and the quantification of the gas generation during the final degradation phase under optimal anaerobic conditions. For this purpose the long-term gas generation (240–1,830 days) of different mechanically biologically treated (MBT) waste materials was measured. In this study the late gas generation was modeled by a log–normal distribution curve to gather the maximum gas generation potential. According to the log–normal model the observed gas sum curve leads to higher values than commonly used exponential decay models. The prediction of the final phase of landfill gas generation by a fitting model provides a basis for CO2 balances in waste management and some information to which extent landfills serve as carbon sink.  相似文献   

2.
Landfill methane oxidation in soil and bio-based cover systems: a review   总被引:1,自引:0,他引:1  
Mitigation of landfill gases has gained the utmost importance in recent years due to the increase in methane (CH4) emissions from landfills worldwide. This, in turn, can contribute to global warming and climatic changes. The concept of microbially mediated methane oxidation in landfill covers by using methanotrophic microorganisms has been widely adopted as a method to counter the rise in methane emissions. Traditionally, landfill soil covers were used to achieve methane oxidation, thereby reducing methane emissions. Meanwhile, the continual rise of CH4 emissions from landfills and the significant need to and importance of developing a better technology has led researchers to explore different methods to enhance microbial methane oxidation by using organic rich materials such as compost in landfill covers. The development and field application of such bio-based systems, explored by various researches worldwide, eventually led to more widely accepted and better performing cover systems capable of reducing CH4 emissions from landfills. However, the long-term performance of bio-based cover systems were found to be negatively affected by factors such as the material’s ability to self-degrade, causing CH4 to be generated rather than oxidized as well as the greater potential for forming pore-clogging exopolymeric substances. In order to design an effective cover system for landfills, it is essential to have a thorough understanding of the concepts incorporated into methodologies currently in favor along with their pros and cons. This review summarizes previous laboratory and field-scale studies conducted on various soil and bio-based cover systems, along with the modeling mechanisms adopted for quantifying CH4 oxidation rates. Finally, several issues and challenges in developing effective and economical soil and bio-based cover systems are presented.  相似文献   

3.
This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.  相似文献   

4.
Biochemical methane potential assays, usually run in batch mode, are performed by numerous laboratories to characterize the anaerobic degradability of biogas substrates such as energy crops, agricultural residues, and organic wastes. Unfortunately, the data obtained from these assays lacks common, universal bases for comparison, because standard protocols did not diffuse to the entire scientific community. Results are usually provided as final values of the methane yields of substrates. However, methane production curves generated in these assays also provide useful information about substrate degradation kinetics, which is rarely exploited. A basic understanding of the kinetics of the biogas process may be a first step towards a convergence of the assay methodologies on an international level. Following this assumption, a modeling toolbox containing an exponential model adjusted with a simple data-fitting method has been developed. This model should allow (a) quality control of the assays according to the goodness of fit of the model onto data series generated from the digestion of standard substrates, (b) interpretation of substrate degradation kinetics, and (c) estimate of the ultimate methane yield at infinite time. The exponential model is based on two assumptions: (a) the biogas process is a two-step reaction yielding VFA as intermediate products, and methane as the final product, and (b) the digestible substrate can be divided into a rapidly degradable and a slowly degradable fraction.  相似文献   

5.
The anaerobic fermentation process has achieved growing importance in practice in recent years. Anaerobic fermentation is especially valuable because its end product is methane, a renewable energy source. While the use of renewable energy sources has accelerated substantially in recent years, their potential has not yet been sufficiently exploited. This is especially true for biogas technology. Biogas is created in a multistage process in which different microorganisms use the energy stored in carbohydrates, fats, and proteins for their metabolism. In order to produce biogas, any organic substrate that is microbiologically accessible can be used. The microbiological process in itself is extremely complex and still requires substantial research in order to be fully understood. Technical facilities for the production of biogas are thus generally scaled in a purely empirical manner. The efficiency of the process, therefore, corresponds to the optimum only in the rarest cases. An optimal production of biogas, as well as a stable plant operation requires detailed knowledge of the biochemical processes in the fermenter. The use of mathematical models can help to achieve the necessary deeper understanding of the process. This paper reviews both the history of model development and current state of the art in modeling anaerobic digestion processes.  相似文献   

6.
This article deals with the impact of water content of solid waste on biogas production kinetics in landfills. This impact has been proved in the laboratory thanks to anaerobic biodegradation experiments on paper/cardboard waste samples. A strong dependence with the moisture level was observed for both kinetic rates and maximum methane production. In this article, a logistic model is proposed to simulate the biogas production rate. It is chosen as simple as possible in order to allow for a correct identification of the model parameters given the experimental data available. The moisture dependency is introduced through a linear weighing of the biomass specific growth rate and of the amount of accessible organic substrate. It is directly linked to physical properties of the waste: the holding capacity and the minimal moisture level allowing the presence of free water.  相似文献   

7.
Anaerobic fungi (phylum Neocallimastigomycota), an early branching family of fungi, are commonly encountered in the digestive tract of mammalian herbivores. To date, isolates from ten described genera have been reported, and several novel taxonomic groupings are detected using culture-independent molecular methods. Anaerobic fungi are recognized as playing key roles in the decomposition of lignocellulose (up to 50% of the ingested and untreated lignocellulose), with their physical penetration and extracellular enzymatical secretion of an unbiased diverse repertoire of cell-wall-degrading enzymes. The secreted cell-wall-degrading enzymes of anaerobic fungi include both free enzymes and extracellular multi-enzyme complexes called cellulosomes, both of which have potential as fiber degraders in industries. In addition, anaerobic fungi can provide large amounts of substrates such as hydrogen, formate, and acetate for their co-cultured methanogens. Consequently, large amounts of methane can be produced. And thus, it is promising to use the co-culture of anaerobic fungi and methanogens in the biogas process to intensify the biogas yield owing to the efficient and robust degradation of recalcitrant biomass by anaerobic fungi and improved methane production from co-cultures of anaerobic fungi and methanogens.  相似文献   

8.
In the present study, the possibility of optimizing biogas production from manure by serial digestion was investigated. In the lab-scale experiments, process performance and biogas production of serial digestion, two methanogenic continuously stirred tank reactors (CSTR) connected in series, was compared to a conventional one-step CSTR process. The one-step process was operated at 55 degrees C with 15d HRT and 5l working volume (control). For serial digestion, the total working volume of 5l was distributed as 70/30%, 50/50%, 30/70% or 13/87% between the two methanogenic reactors, respectively. Results showed that serial digestion improved biogas production from manure compared to one-step process. Among the tested reactor configurations, best results were obtained when serial reactors were operated with 70/30% and 50/50% volume distribution. Serial digestion at 70/30% and 50/50% volume distribution produced 13-17.8% more biogas and methane and, contained low VFA and residual methane potential loss in the effluent compared to the one-step CSTR process. At 30/70% volume distribution, an increase in biogas production was also noticed but the process was very unstable with low methane production. At 13/87% volume distribution, no difference in biogas production was noticed and methane production was much lower than the one-step CSTR process. Pilot-scale experiments also showed that serial digestion with 77/23% volume distribution could improve biogas yields by 1.9-6.1% compared to one-step process. The study thus suggests that the biogas production from manure can be optimized through serial digestion with an optimal volume distribution of 70/30% or 50/50% as the operational fluctuations are typically high during full scale application. However, process temperature between the two methanogenic reactors should be as close as possible in order to derive the benefits of serial coupling.  相似文献   

9.
Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review.  相似文献   

10.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

11.
This study evaluated the feasibility of methane production from fruit and vegetable waste (FVW) obtained from the central food distribution market in Mexico City using an anaerobic digestion (AD) process. Batch systems showed that pH control and nitrogen addition had significant effects on biogas production, methane yield, and volatile solids (VS) removal from the FVW (0.42 m(biogas)(3)/kg VS, 50%, and 80%, respectively). Co-digestion of the FVW with meat residues (MR) enhanced the process performance and was also evaluated in a 30 L AD system. When the system reached stable operation, its methane yield was 0.25 (m(3)/kg TS), and the removal of the organic matter measured as the total chemical demand (tCOD) was 65%. The microbial population (general Bacteria and Archaea) in the 30 L system was also determined and characterized and was closely correlated with its potential function in the AD system.  相似文献   

12.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

13.
Anaerobic municipal wastewater treatment in developing countries has important potential applications considering their huge lack of sanitation infrastructure and their advantageous climatic conditions. At present, among the obstacles that this technology encounters, odor control and biogas utilization or disposal should be properly addressed. In fact, in most of small and medium size anaerobic municipal treatment plants, biogas is just vented, transferring pollution from water to the atmosphere, contributing to the greenhouse gas inventory. Anaerobic municipal sewage treatment should not be considered as an energy producer, unless a significant wastewater flow is treated. In these cases, more than half of the methane produced is dissolved and lost in the effluent so yield values will be between 0.08 and 0.18 N m3 CH4/kg COD removed. Diverse technologies for odor control and biogas cleaning are currently available. High pollutant concentrations may be treated with physical-chemical methods, while biological processes are used mainly for odor control to prevent negative impacts on the treatment facilities or nearby areas. In general terms, biogas treatment is accomplished by physico-chemical methods, scrubbing being extensively used for H2S and CO2 removal. However, dilution (venting) has been an extensive disposal method in some small- and medium-size anaerobic plants treating municipal wastewaters. Simple technologies, such as biofilters, should be developed in order to avoid this practice, matching with the simplicity of anaerobic wastewater treatment processes. In any case, design and specification of biogas handling system should consider safety standards. Resource recovery can be added to anaerobic sewage treatment if methane is used as electron donor for denitrification and nitrogen control purposes. This would result in a reduction of operational cost and in an additional advantage for the application of anaerobic sewage treatment. In developing countries, biogas conversion to energy may apply for the clean development mechanism (CDM) of the Kyoto Protocol. This would increase the economic feasibility of the project through the marketing of certified emission reductions (CERs).  相似文献   

14.
Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.  相似文献   

15.
Strategies for recovery of ammonia-inhibited thermophilic biogas process, were evaluated in batch and lab-scale reactors. Active methane producing biomass (digested cattle manure) was inhibited with NH(4)Cl and subsequently, 3-5 days later, diluted with 50% of water, or with 50% digested manure, or with 50% fresh manure or kept undiluted. Dilution with fresh cattle manure resulted in the highest methane production rate during the recovery period while dilution with digested cattle manure gave a more balanced recovery according to the fluctuations in volatile fatty acids. Furthermore, the process recovery of a 7600m(3) biogas plant suffering from ammonia inhibition was observed. The ammonia concentration was only gradually lowered via the daily feeding with cattle manure, as is the normal procedure at Danish full-scale biogas plants. Recovery took 31 days with a 40% methane loss and illustrates the need for development of efficient process recovery strategies.  相似文献   

16.
Anaerobic co-digestion is effective and environmentally attractive technology for energy recovery from organic waste. Organic, agricultural and industrial wastes are good substrates for anaerobic co-digestion because they contain high levels of easily biodegradable materials. In this paper enhancement of biogas production from codigestion of whey and cow manure was investigated in a series of batch experiments. The influence of whey ratio on specific biogas production in a mixture with cow manure was analyzed at 35 and 55°C, for different initial pH values and for different concentrations of supplemental bicarbonate in experiments carried out over 12 days. Good biogas production (6.6 dm3/dm3), methane content (79.4%) in a biogas mixture and removal efficiencies for total solids (16%) were achieved at optimum process conditions (temperature of 55°C, 10% v/v of whey and 5 g/dm3 NaHCO3 in the initial mixture). In order to validate optimized conditions for co-digestion of whey and cow manure in the one-stage batch process, the experiments were performed within 45 days. The high biogas production (21.8 dm3/dm3), a good methane content (78.7%) in a biogas mixture as well as maximum removal efficiencies for total solids (32.3%), and chemical oxygen demand (56.3%), respectively indicate that whey could be efficiently degraded to biogas in a onestage batch process when co-digested with cow manure.  相似文献   

17.
Methane is the main component of natural gas and biogas. As an abundant energy source, methane is crucial not only to meet current energy needs but also to achieve a sustainable energy future. Conversion of methane to liquid fuels provides energy-dense products and therefore reduces costs for storage, transportation, and distribution. Compared to thermochemical processes, biological conversion has advantages such as high conversion efficiency and using environmentally friendly processes. This paper is a comprehensive review of studies on three promising groups of microorganisms (methanotrophs, ammonia-oxidizing bacteria, and acetogens) that hold potential in converting methane to liquid fuels; their habitats, biochemical conversion mechanisms, performance in liquid fuels production, and genetic modification to enhance the conversion are also discussed. To date, methane-to-methanol conversion efficiencies (moles of methanol produced per mole methane consumed) of up to 80% have been reported. A number of issues that impede scale-up of this technology, such as mass transfer limitations of methane, inhibitory effects of H2S in biogas, usage of expensive chemicals as electron donors, and lack of native strains capable of converting methane to liquid fuels other than methanol, are discussed. Future perspectives and strategies in addressing these challenges are also discussed.  相似文献   

18.
The potential of various biomasses for the production of green chemicals is currently one of the key topics in the field of the circular economy. Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and they can be produced in similar reactors as biogas to increase the productivity of a digestion plant, as VFAs have more varying end uses compared to biogas and methane. In this study, the aim was to assess the biogas and VFA production of food waste (FW) and cow slurry (CS) using the anaerobic biogas plant inoculum treating the corresponding substrates. The biogas and VFA production of both biomasses were studied in identical batch scale laboratory conditions while the process performance was assessed with chemical and microbial analyses. As a result, FW and CS were shown to have different chemical performances and microbial dynamics in both VFA and biogas processes. FW as a substrate showed higher yields in both processes (435 ml CH4/g VSfed and 434 mg VFA/g VSfed) due to its characteristics (pH, organic composition, microbial communities), and thus, the vast volume of CS makes it also a relevant substrate for VFA and biogas production. In this study, VFA profiles were highly dependent on the substrate and inoculum characteristics, while orders Clostridiales and Lactobacillales were connected with high VFA and butyric acid production with FW as a substrate. In conclusion, anaerobic digestion supports the implementation of the waste management hierarchy as it enables the production of renewable green chemicals from both urban and rural waste materials.  相似文献   

19.
A problem currently encountered by government agencies concerned with environmental health and safety is the determination of the methane content of soil in and around sanitary landfills. The feasibility of using methanol-oxidizing bacteria (methylotrophs) as an index of the methane content of soils from sanitary landfills was tested in this study. A statistically significant correlation was shown to exist between the methane content of soil and the number of methanol-oxidizing bacteria in soil.  相似文献   

20.
Growing interest in converting biomass to renewable energies has led to a considerable expansion of maize cultivation in Germany to provide substrate for anaerobic digestion, producing methane for heat and electricity generation. For decades, maize has been bred for human and livestock nutrition as well as industrial purposes, but not for biomethanization. This review addresses the optimization potential for enhancing maize methane yield, especially open issues pertaining to biogas maize breeding objectives. A great challenge to be faced is the precise quantification of maize-specific methane yield (SMY), i.e., the methane yield per unit biomass. Methodological aspects covered in this review include the impact of the fermentation test procedure as well as of substrate conservation and pretreatment. The contribution of genotypic variation to methane hectare yield (MHY) and SMY are discussed and changes in SMY and MHY during maturation are assessed with respect to harvest timing. The review concludes with a systematic overview of research findings on the relation between SMY and chemical composition, approaches to SMY estimation, and their validation. There is still considerable controversy concerning a biogas maize ideotype; recent research, however, suggests that it differs from the forage maize ideotype, and that a high methane yield can be achieved by different breeding strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号