首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Staphylococcus aureus elaborates two citrate‐containing siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), that enhance growth under iron‐restriction, yet, paradoxically, expression of the TCA cycle citrate synthase, CitZ, is downregulated during iron starvation. Iron starvation does, however, result in expression of SbnG, recently identified as a novel citrate synthase that is encoded from within the iron‐regulated SB biosynthetic locus, suggesting an important role for SbnG in staphyloferrin production. We demonstrate that during growth of S. aureus in iron‐restricted media containing glucose, SB is produced but, in contrast, SA production is severely repressed; accordingly, SB‐deficient mutants grow poorly in these media. Hypothesizing that reduced TCA cycle activity hinders SA production, we show that a citZ mutant is capable of SB synthesis, but not SA synthesis, providing evidence that SbnG does not generate citrate for incorporation into SA. A citZ sbnG mutant synthesizes neither staphyloferrin, is severely compromised for growth in iron‐restricted media, and is significantly more impaired for virulence than either of the single‐deletion mutants. We propose that SB is the more important of the two siderophores for S. aureus insofar as it is synthesized, and supports iron‐restricted growth, without need of TCA cycle activity.  相似文献   

2.
Physical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein‐protein and protein‐lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER‐LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion. Seipin is enriched in ER tubules that form cage‐like structures around a subset of LDs. Such enrichment is strongly dependent on polyunsaturated and cyclopropane fatty acids. Based on these findings, we speculate on molecular events that lead to the formation of seipin‐positive peri‐LD cages in which protein movement is restricted. We hypothesize that asymmetric distribution of specific phospholipids distinguishes cage membrane tubules from the bulk ER.  相似文献   

3.
Aging and age‐related diseases are associated with a decline of protein homeostasis (proteostasis), but the mechanisms underlying this decline are not clear. In particular, decreased proteostasis is a widespread molecular feature of neurodegenerative diseases, such as Alzheimer's disease (AD). Familial AD is largely caused by mutations in the presenilin encoding genes; however, their role in AD is not understood. In this study, we investigate the role of presenilins in proteostasis using the model system Caenorhabditis elegans. Previously, we found that mutations in C. elegans presenilin cause elevated ER to mitochondria calcium signaling, which leads to an increase in mitochondrial generated oxidative stress. This, in turn, promotes neurodegeneration. To understand the cellular mechanisms driving neurodegeneration, using several molecular readouts of protein stability in C. elegans, we find that presenilin mutants have widespread defects in proteostasis. Markedly, we demonstrate that these defects are independent of the protease activity of presenilin and that reduction in ER to mitochondrial calcium signaling can significantly prevent the proteostasis defects observed in presenilin mutants. Furthermore, we show that supplementing presenilin mutants with antioxidants suppresses the proteostasis defects. Our findings indicate that defective ER to mitochondria calcium signaling promotes proteostatic collapse in presenilin mutants by increasing oxidative stress.  相似文献   

4.
5.
Purpose Partial bladder outlet obstruction (PBOO) results in marked biochemical alterations in the bladder. In this study, we focused on comparison of thapsigargin sensitive sarco/endoplasmic reticulum Ca2+ ATPase activity (SERCA) and Citrate Synthase after short term PBOO in young versus old rabbits. Materials and methods A total of 20 young and 20 mature male rabbits were divided into 4 sub-groups of 5 rabbits each (4 obstructed and 1 sham-control rabbit). The rabbits in the groups were evaluated after 1, 3, 7, and 14 days of obstruction, respectively. The activities of SERCA and citrate synthase were examined as markers for sarcoplasmic reticular calcium storage and release and mitochondrial function, respectively. Results The SERCA activity of bladder body smooth muscle in the young animals increased at 7 and 14 days. For the old rabbits, the SERCA activity decreased significantly by 1 day and remained this level throughout the course of obstruction, and was significantly lower than young at all time periods. The citrate synthase activity in the young animals decreased over the 1–7 days, and then returned toward control level by 14 days following obstruction. In the old animals, citrate synthase activity of bladder body smooth muscle progressively decreased over the course of the study, and was significantly lower in the old than the young animals after 14 days obstructed. Conclusion The urinary bladders of the young rabbits have a considerable greater ability to adapt to PBOO than do those of the old rabbits. The deterioration of mitochondrial and SR function may be important mechanisms underlying geriatric voiding dysfunction.  相似文献   

6.
Cultured cells of tobacco (Nicotiana tabacum L. cv Petit Havana) were used to investigate signals regulating the expression of the model nuclear gene encoding the alternative oxidase (AOX) (AOX1), the terminal oxidase of the mitochondrial alternative respiratory pathway. Several conditions shown to induce AOX1 mRNA accumulation also result in an increase in cellular citrate concentrations, suggesting that citrate and/or other tricarboxylic acid (TCA) cycle intermediates may be important signal metabolites. In addition, mitochondrial reactive oxygen species (ROS) production has recently been shown to be a factor mediating mitochondria-to-nucleus signaling for the expression of AOX1. We found that the exogenously supplied TCA cycle organic acids citrate, malate and 2-oxoglutarate caused rapid and dramatic increases in the steady-state level of AOX1 mRNA at low, near physiological concentrations (0.1 mM). Furthermore, an increase in AOX1 induced by the addition of organic acids occurs independently of mitochondrial ROS formation. Our results demonstrate that two separate pathways for mitochondria-to-nucleus signaling of AOX1 may exist, one involving ROS and the other organic acids.  相似文献   

7.
Objective: Although oestrogen‐related receptor α (ERRα) is primarily thought to regulate energy homeostasis, it also serves as a prognostic marker for cancer. The aim of this study was to investigate any connection between ERRα activity and cell population growth. Materials and methods: XCT‐790, an ERRa specific inverse agonist, was employed to suppress ERRa activity in human non‐small cell lung cancer cells (NSCLC) A549. Gene expressions were detected using quantitative real‐time PCR and Western blot analysis. Mitochondrial mass, membrane potential and reactive oxygen species (ROS) production were measured by staining with Mitotracker green, JC‐1 and CM‐H2DCFDA dyes respectively. Rate of progression through the tricarboxylic acid (TCA) cycle was analysed by measuring activities of citrate synthase and succinate dehydrogenase. Cell cycle analysis was performed by using flow cytometry. Results: We found that XCT‐790 treatment reduced mitochondrial mass but enhanced mitochondrial ROS production by increasing rate through the TCA cycle, elevating mitochondrial membrane potential (ΔΨm) and down‐regulating expression of superoxide dismutase. It was further demonstrated that XCT‐790‐induced ROS modulated p53 and Rb signalling pathways and suppressed cell replication. Conclusions: ERRα affects cell cycle mechanisms through modulating mitochondrial mass and function. Dysregulation of this essential pathway leads to elevation in mitochondrial ROS production, which in turn modulates activities of tumour suppressors, resulting in cell cycle arrest.  相似文献   

8.
The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma‐aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node.  相似文献   

9.
Nematodes, like other species, derive much of the energy for cellular processes from mitochondrial pathways including the TCA cycle. Previously, we have shown L3Teladorsagia circumcincta consume oxygen and so may utilise a full TCA cycle for aerobic energy metabolism. We have assessed the relative activity levels and substrate affinities of citrate synthase, aconitase, isocitrate dehydrogenase (both NAD+ and NADP+ specific) and α-ketoglutarate dehydrogenase in homogenates of L3T. circumcincta. All of these enzymes were present in homogenates. Compared with citrate synthase, low levels of enzyme activity and low catalytic efficiency was observed for NAD+ isocitrate dehydrogenase and especially α-ketoglutarate dehydrogenase. Therefore, it is likely that the activity of these to enzymes regulate overall metabolite flow through the TCA cycle, especially when [NAD+] limits enzyme activity. Of the enzymes tested, only citrate synthase had substrate affinities which were markedly different from values obtained from mammalian species. Overall, the results are consistent with the suggestion that a full TCA cycle exists within L3T. circumcincta. While there may subtle variations in enzyme properties, particularly for citrate synthase, the control points for the TCA cycle in L3T. circumcincta are probably similar to those in the tissues of their host species.  相似文献   

10.
11.
Mitochondria are the energy‐generating hubs of the cell. In spite of considerable advances, our understanding of the factors that regulate the molecular circuits that govern mitochondrial function remains incomplete. Using a genome‐wide functional screen, we identify the poorly characterized protein Zinc finger CCCH‐type containing 10 (Zc3h10) as regulator of mitochondrial physiology. We show that Zc3h10 is upregulated during physiological mitochondriogenesis as it occurs during the differentiation of myoblasts into myotubes. Zc3h10 overexpression boosts mitochondrial function and promotes myoblast differentiation, while the depletion of Zc3h10 results in impaired myoblast differentiation, mitochondrial dysfunction, reduced expression of electron transport chain (ETC) subunits, and blunted TCA cycle flux. Notably, we have identified a loss‐of‐function mutation of Zc3h10 in humans (Tyr105 to Cys105) that is associated with increased body mass index, fat mass, fasting glucose, and triglycerides. Isolated peripheral blood mononuclear cells from individuals homozygotic for Cys105 display reduced oxygen consumption rate, diminished expression of some ETC subunits, and decreased levels of some TCA cycle metabolites, which all together derive in mitochondrial dysfunction. Taken together, our study identifies Zc3h10 as a novel mitochondrial regulator.  相似文献   

12.
Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER–LD contacts in human cells, typically via one mobile focal point per LD. Seipin appears critical for such contacts since ER–LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin‐deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre‐existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER–LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.  相似文献   

13.
The aim of this study was to investigate how mesenchymal stromal cells (MSCs) modulate metabolic balance and attenuate hepatic lipotoxicity in the context of non-alcoholic fatty liver disease (NAFLD). In vivo, male SD rats were fed with high-fat diet (HFD) to develop NAFLD; then, they were treated twice by intravenous injections of rat bone marrow MSCs. In vitro, HepG2 cells were cocultured with MSCs by transwell and exposed to palmitic acid (PA) for 24 hours. The endoplasmic reticulum (ER) stressor thapsigargin and sarco/ER Ca2+-ATPase (SERCA2)–specific siRNA were used to explore the regulation of ER stress by MSCs. We found that MSC administration improved hepatic steatosis, restored systemic hepatic lipid and glucose homeostasis, and inhibited hepatic ER stress in HFD-fed rats. In hepatocytes, MSCs effectively alleviated the cellular lipotoxicity. Particularly, MSCs remarkably ameliorated the ER stress and intracellular calcium homeostasis induced by either PA or thapsigargin in HepG2 cells. Additionally, long-term HFD or PA stimulation would activate pyroptosis in hepatocytes, which may contribute to the cell death and liver dysfunction during the process of NAFLD, and MSC treatment effectively ameliorates these deleterious effects. SERCA2 silencing obviously abolished the ability of MSCs against the PA-induced lipotoxicity. Conclusively, our study demonstrated that MSCs were able to ameliorate liver lipotoxicity and metabolic disturbance in the context of NAFLD, in which the regulation of ER stress and the calcium homeostasis via SERCA has played a key role.  相似文献   

14.
The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4 + assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu.  相似文献   

15.
During dark‐induced senescence isovaleryl‐CoA dehydrogenase (IVDH) and D‐2‐hydroxyglutarate dehydrogenase (D‐2HGDH) act as alternate electron donors to the ubiquinol pool via the electron‐transfer flavoprotein/electron‐transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D‐2GHDH, loss‐of‐function etfqo‐1, d2hgdh‐2 and ivdh‐1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought‐induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched‐chain amino acids in loss‐of‐function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.  相似文献   

16.
Endoplasmic reticulum (ER) stress is intimately linked to Parkinson’s disease (PD) pathophysiology. Disrupted intracellular calcium homeostasis is a major cause of the ER stress seen in dopaminergic neurons, leading to the cell death and subsequent loss of movement and coordination in patients. Dysfunctional calcium handling proteins play a major role in the promulgation of ER stress in PD. Specifically, compromised sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) has been identified as a major cause of ER stress and neuron loss in PD. We have identified a small molecule activator of SERCA that increases ER calcium content, rescues neurons from ER stress-induced cell death in vitro, and shows significant efficacy in the rat 6-hydroxydopamine (6-OHDA) model of PD. Together, these results support targeting SERCA activation as a viable strategy to develop disease-modifying therapeutics for PD.  相似文献   

17.
Ca2+-dependent redox modulation of SERCA 2b by ERp57   总被引:2,自引:0,他引:2  
We demonstrated previously that calreticulin (CRT) interacts with the lumenal COOH-terminal sequence of sarco endoplasmic reticulum (ER) calcium ATPase (SERCA) 2b to inhibit Ca2+ oscillations. Work from other laboratories demonstrated that CRT also interacts with the ER oxidoreductase, ER protein 57 (also known as ER-60, GRP58; ERp57) during folding of nascent glycoproteins. In this paper, we demonstrate that ERp57 overexpression reduces the frequency of Ca2+ oscillations enhanced by SERCA 2b. In contrast, overexpression of SERCA 2b mutants defective in cysteines located in intralumenal loop 4 (L4) increase Ca2+ oscillation frequency. In vitro, we demonstrate a Ca2+-dependent and -specific interaction between ERp57 and L4. Interestingly, ERp57 does not affect the activity of SERCA 2a or SERCA 2b mutants lacking the CRT binding site. Overexpression of CRT domains that disrupt the interaction of CRT with ERp57 behave as dominant negatives in the Ca2+ oscillation assay. Our results suggest that ERp57 modulates the redox state of ER facing thiols in SERCA 2b in a Ca2+-dependent manner, providing dynamic control of ER Ca2+ homeostasis.  相似文献   

18.
The endoplasmic reticulum (ER) is the major site for protein folding in eukaryotic cells. ER homeostasis is essential for the development of an organism, whereby the unfolded protein response (UPR) within the ER is precisely regulated. ER‐phagy is a newly identified selective autophagic pathway for removal of misfolded or unfolded proteins within the ER in mammalian cells. Sec62, a component of the translocon complex, was recently characterized as an ER‐phagy receptor during the ER stress recovery phase in mammals. In this study, we demonstrated that the Arabidopsis Sec62 (AtSec62) is required for plant development and might function as an ER‐phagy receptor in plants. We showed that AtSec62 is an ER‐localized membrane protein with three transmembrane domains (TMDs) with its C‐terminus facing to the ER lumen. AtSec62 is required for plant development because atsec62 mutants display impaired vegetative growth, abnormal pollen and decreased fertility. atsec62 mutants are sensitive towards tunicamycin (TM)‐induced ER stress, whereas overexpression of AtSec62 subsequently enhances stress tolerance during the ER stress recovery phase. Moreover, YFP‐AtSec62 colocalizes with the autophagosome marker mCh‐Atg8e in ring‐like structures upon ER stress induction. Taken together, these data provide evidence for the pivotal roles of AtSec62 in plant development and ER‐phagy.  相似文献   

19.
Cyclic diadenosine monophosphate (c‐di‐AMP) is a conserved nucleotide second messenger critical for bacterial growth and resistance to cell wall‐active antibiotics. In Listeria monocytogenes, the sole diadenylate cyclase, DacA, is essential in rich, but not synthetic media and ΔdacA mutants are highly sensitive to the β‐lactam antibiotic cefuroxime. In this study, loss of function mutations in the oligopeptide importer (oppABCDF) and glycine betaine importer (gbuABC) allowed ΔdacA mutants to grow in rich medium. Since oligopeptides were sufficient to inhibit growth of the ΔdacA mutant we hypothesized that oligopeptides act as osmolytes, similar to glycine betaine, to disrupt intracellular osmotic pressure. Supplementation with salt stabilized the ΔdacA mutant in rich medium and restored cefuroxime resistance. Additional suppressor mutations in the acetyl‐CoA binding site of pyruvate carboxylase (PycA) rescued cefuroxime resistance and resulted in a 100‐fold increase in virulence of the ΔdacA mutant. PycA is inhibited by c‐di‐AMP and these mutations prompted us to examine the role of TCA cycle enzymes. Inactivation of citrate synthase, but not down‐stream enzymes suppressed ΔdacA phenotypes. These data suggested that c‐di‐AMP modulates central metabolism at the pyruvate node to moderate citrate production and indeed, the ΔdacA mutant accumulated six times the concentration of citrate present in wild‐type bacteria.  相似文献   

20.
Previous studies have shown that the cardiolipin (CL)-deficient yeast mutant, crd1Δ, has decreased levels of acetyl-CoA and decreased activities of the TCA cycle enzymes aconitase and succinate dehydrogenase. These biochemical phenotypes are expected to lead to defective TCA cycle function. In this study, we report that signaling and anaplerotic metabolic pathways that supplement defects in the TCA cycle are essential in crd1Δ mutant cells. The crd1Δ mutant is synthetically lethal with mutants in the TCA cycle, retrograde (RTG) pathway, glyoxylate cycle, and pyruvate carboxylase 1. Glutamate levels were decreased, and the mutant exhibited glutamate auxotrophy. Glyoxylate cycle genes were up-regulated, and the levels of glyoxylate metabolites succinate and citrate were increased in crd1Δ. Import of acetyl-CoA from the cytosol into mitochondria is essential in crd1Δ, as deletion of the carnitine-acetylcarnitine translocase led to lethality in the CL mutant. β-oxidation was functional in the mutant, and oleate supplementation rescued growth defects. These findings suggest that TCA cycle deficiency caused by the absence of CL necessitates activation of anaplerotic pathways to replenish acetyl-CoA and TCA cycle intermediates. Implications for Barth syndrome, a genetic disorder of CL metabolism, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号