首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the transition phase of Candida apicola IMET 43747 from logarithmic to stationary growth a pyridine-nucleotide-independent alcohol oxidase was induced coinciding with the beginning of sophorose lipid production. This enzyme was not repressed by glucose and was measurable in stationary cells grown on glucose or on a mixture of n-hexadecane and glucose. An NAD+-dependent aldehyde dehydrogenase behaved in the same way. Both enzymes were localized in the microsomal fraction. The alcohol oxidase accepted long-chain (fatty) aliphatic alcohols (C8 to at least C16) and diols starting from decanediol. Trace activities were found with -hydroxy fatty acids. Aromatic, secondary and tertiary alcohols were not oxidized. In the stationary growth phase the substrate specificity of the alcohol oxidase tends to be changed to more hydrophobic substrates. The physiological role of both enzymes, the alcohol oxidase and aldehyde dehydrogenase, is discussed including their possible involvement in the synthesis of sophorose lipid. Correspondence to: R. K. Hommel  相似文献   

2.
Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC–MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n-C14) or branched (pristane) alkanes. During growth on n-C14, A. borkumensis expressed a complete pathway for the terminal oxidation of n-alkanes to their corresponding acyl-CoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for β-oxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of β-oxidation proteins to overcome steric hinderance from branched substrates.  相似文献   

3.
The growth of Hansenula polymorpha and Kloeckera sp. 2201 with a mixture of glucose and methanol (38.8%/61.2%, w/w) and the regulation of the methanol dissimilating enzymes alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase were studied in chemostat culture, as a function of the dilution rate. Both organisms utilized and assimilated glucose and methanol simultaneously up to dilution rates of 0.30 h-1 (H. polymorpha) and 0.26h-1, respectively (Kloeckera sp. 2201) which significantly exceeded max found for the two yeasts with methanol as the only source of carbon. At higher dilution rates methanol utilisation ceased and only glucose was assimilated. Over the whole range of mixed-substrate growth both carbon sources were assimilated with the same efficiency as during growth with glucose or methanol alone.In cultures of H. polymorpha, however, the growth yield for glucose was lowered by the unmetabolized methanol at high dilution rates. During growth on both carbon sources the repression of the synthesis of all catabolic methanol enzymes which is normally caused by glucose was overcome by the inductive effect of the simultaneously fed methanol. In both organisms the synthesis of alcohol oxidase was found to be regulated differently as compared to catalase, formaldehyde and formate dehydrogenase. Whereas increasing repression of the synthesis of alcohol oxidase was found with increasing dilution rates as indicated by gradually decreasing specific activities of this enzyme in cell-free extracts, the specific activities of this enzyme in cell-free extracts, the specific activities of catalase and the dehydrogenases increased with increasing growth rates until repression started. The results indicate similar patterns of the regulation of the synthesis of methanol dissimilating enzymes in different methylotrophic yeasts.Abbreviations and Terms C1 Methanol - C6 glucose; D dilution rate (h-1) - D c critical dilution rate (h-1) - q s specific, rate of substrate consumption (g substrate [g cell dry weight]-1 h-1) - q CO2 and q O2 are the specific rates of carbon dioxide release and oxygen consumption (mmol [g cell dry weight]-1 h-1) - RQ respiration quotient (q CO2 q O2 1 ) - s 0(C1) and s 0(C6) are the concentrations of methanol and glucose in the inflowing medium (g l-1) - s residual substrate concentration in the culture liquid (g l-1) - Sp. A. enzyme specific activity - x cell dry weight concentration (gl-1) - Y X/C6 growth yield on glucose (g cell dry weight [g substrate]-1  相似文献   

4.
Sixteen Tn916-induced mutants of Clostridium acetobutylicum were selected that were defective in the production of acetone and butanol. Formation of ethanol, however, was only partially affected. The strains differed with respect to the degree of solvent formation ability and could be assigned to three different groups. Type I mutants (2 strains) were completely defective in acetone and butanol production and contained one or three copies of Tn916 in the chromosome. Analysis of the mutants for enzymes responsible for solvent production revealed the presence of a formerly unknown, specific acetaldehyde dehydrogenase. The data obtained also strongly indicate that the NADP+-dependent alcohol dehydrogenase is in vivo reponsible for ethanol formation, whereas the NAD+-dependent alcohol dehydrogenase is probably involved in butanol production. No activity of this enzyme together with all other enzymes in the acetone and butanol pathway could be found in type I strains. All tetracycline-resistant mutants obtained did no longer sporulate.Non-standard abbreviations AADC acetoacetate decarboxylase - AcaDH acetaldehyde dehydrogenase - BuaDH butyraldehyde dehydrogenase - CoA-TF acetoacetyl coenzyme A: acetate/butyrate: coenzyme A transferase - NAD-ADH, NAD+ dependent alcohol dehydrogenase - NADP-ADH, NADP+ dependent alcohol dehydrogenase  相似文献   

5.
The effects of environmental conditions, including temperature, pH and dissolved oxygen, on growth and production of polyvinyl alcohol (PVA)-degrading enzymes of the newly-isolated strain Streptomyces venezuelae GY1 were investigated. The medium composition for strain GY1 was studied first by single factorial design and then optimized using a central composite design. PVA with high saponification is better for growth of, and PVA-degrading enzyme production by S. venezuelae GY1 compared with PVA with low saponification, in contrast with the characteristics of other bacteria producing PVA-degrading enzymes. The optimal temperature and initial pH for production of PVA-degrading enzyme by strain GY1 was 30°C and 7.0, respectively. The optimal medium composition for PVA-degrading enzyme production is: 1.01 g L?1 of PVA1799, 0.307 g L?1 of NaNO3 and 0.512 g L?1 of MgSO4?7H2O.  相似文献   

6.
Saccharomyces cerevisiae was grown in aerobic continuous culture on a defined minimal medium, with glucose (40 g.l−1) as the growth-limiting carbon source, to acquire knowledge useful in process design and for model-based control. Steady-state concentrations of biomass, glucose, ethanol and activities of model products alcohol dehydrogenase, hexokinase, malate dehydrogenase, glucose-6-phosphate dehydrogenase and iso-citrate dehydrogenase were determined at dilution rates (D) between 0.06 h−1 and 0.323 h−1 (close to μmax). Enzyme activities showed productivity trends related to the transition from oxidative to oxido-reductive growth. Conclusions are drawn from the data with regard to designing a new process for production of intracellular enzymes. Issues of process stability as well as productivity are discussed.  相似文献   

7.
An NAD+-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD+ as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD+. F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85°C and the most active at 70°C. The half-life time and k cat value at 60°C were calculated to be 50 min and 27,400 min−1, respectively. The enzyme also shows high catalytic efficiency at low temperatures (0–20°C) (k cat/K m at 10°C; 12,600 mM−1 min−1) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.  相似文献   

8.
Summary Growth and metabolite formation were studied as a function of oxygen feed rate, in glucose-limited chemostat cultures of Hanseniaspora uvarum K5 at a dilution rate of 0.26 h–1. Alcoholic fermentation occured at an oxygen feed rate of 80 mmol.l–1.h–1 . Below this value, pyruvate decarboxylase and alcohol dehydrogenase were present at high levels. In contrast, activities of oxidative metabolism enzymes, pyruvate dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase, decreased.  相似文献   

9.
Activities of the enzymes of formaldehyde (FA) catabolism in recombinant strains of the methylotrophic yeast Hansenula polymorpha overproducing NAD+- and glutathione-dependent formaldehyde dehydrogenase (FADH) were studied under different cultivation conditions and at elevated FA content. Southern dot-blot analysis confirmed the presence of six to eight copies of the target FLD1 gene in stable recombinant clones of H. polymorpha. Under certain cultivation conditions, the transformants resistant to elevated FA concentrations were shown to produce FADH and other bioanalytically important enzymes: formate dehydrogenase, alcohol dehydrogenase, alcohol oxidase, and formaldehyde reductase. The optimal cultivation conditions for recombinants were determined, resulting in maximum synthesis of FADH: methanol as a carbon source, methylamine as a nitrogen source, FA as an inducer, temperature of 37°C, and cells in the early exponential phase of growth.  相似文献   

10.
For Hyphomicrobium 53-49 capable of growing under various conditions, aerobic methanol, anaerobic methanol (with denitrification), autotrophic (H2-O2-CO2), aerobic ethanol and aerobic acetate, investigation and comparison of the specific activities of the following enzymes were performed: alcohol dehydrogenase (NAD-ethanol linked and NAD-methanol linked), primary alcohol dehydrogenase, formaldehyde dehydrogenase (NAD-GSH linked and DCPIP linked), formate dehydrogenase, serine hydroxymethyl transferase, hydroxypyruvate reductase, isocitrate lyase (icl), malate lyase, malate dehydrogenase, ribulosebisphosphate (RuBP) carboxylase, phos-phoenolpyruvate (PEP) carboxykinase (ADP linked), PEP carboxylase (phosphorylating), pyruvate carboxylase (NADH linked and NADPH linked) and α-ketoglutarate carboxylase (NADH linked and NADPH linked). On the basis of the data obtained, it was concluded that during growth on methanol, aerobically and anaerobically, the icl+ serine pathway operated, while during autotrophic growth on H2-O2-CO2, CO2 was incorporated through the RuBP pathway and others, and during growth on ethanol or acetate, neither the serine pathway nor the RuBP pathway operated. The organism changed its metabolism through the regulation of the metabolic enzymes according to the growth conditions.  相似文献   

11.
Summary In the final step of the pathway producing ethanol in anoxic crucian carp (Carassius carassius L.), acetaldehyde is reduced to ethanol by alcohol dehydrogenase. The presence of aldehyde dehydrogenase in the tissues responsible for ethanol production could cause an undesired oxidation of acetaldehyde to acetate coupled with a reduction of NAD+ to NADH. Moreover, acetaldehyde could competitively inhibit the oxidation of reactive biogenic aldehydes. In the present study, the distribution of aldehyde dehydrogenase (measured with a biogenic aldehyde) and alcohol dehydrogenase (measured with acetaldehyde) were studied in organs of crucian carp, common carp (Cyprinus carpio L.), rainbow trout (Salmo gairdneri Richardson), and Norwegian rat (Rattus norvegicus Berkenhout). The results showed that alcohol dehydrogenase and aldehyde dehydrogenase activities were almost completely spatially separated in the crucian carp. These enzymes occurred together in the other three vertebrates. In the crucian carp, alcohol dehydrogenase was only found in red and white skeletal muscle, while these tissues contained exceptionally low aldehyde dehydrogenase activities. Moreover, the low aldehyde dehydrogenase activity found in crucian carp red muscle was about 1000 times less sensitive to inhibition by acetaldehyde than that found in other tissues and other species. The results are interpreted as demonstrating adaptations to avoid a depletion of ethanol production, and possibly inhibition of biogenic aldehyde metabolism.Abbreviations ADH alcohol dehydrogenase - ALDH aldehyde dehydrogenase - DOPAL 3,4-dihydroxyphenylacetaldehyde - MAO monoamine oxidase - PCA perchloric acid  相似文献   

12.
T. Betsche  K. Bosbach  B. Gerhardt 《Planta》1979,146(5):567-574
By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD+-dependent L-lactate oxidation (10-4 kat kg-1 protein), as well as NADH-dependent pyruvate reduction (10-3 kat kg-1 protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate oxidizing enzyme. These enzymes could be separated from the protein displaying lactate dehydrogenase activity by gel filtration and electrophoresis and distinguished from it by their known properties. The enzyme under consideration does not oxidize D-lactate, and reduces pyruvate to L-lactate (the configuration of which was determined using highly specific animal L-lactate dehydrogenase). Based on these results the studied Capsella leaf enzyme is classified as L-lactate dehydrogenase (EC 1.1.1.27). It has a Km value of 0.25 mmol l-1 (pH 7.0, 0.3 mmol l-1 NADH) for pyruvate and of 13 mmol l-1 (pH 7.8, 3 mmol l-1 NAD+) for L-lactate. Lactate dehydrogenase activity was also detected in the leaves of several other plants.Abbreviation FMN flavin adenine mononucleotide  相似文献   

13.
The sulfate-reducing bacterimDesulfovibrio strain HDv (DSM 6830) grew faster on (S)- and on (R, S)-1,2-propanediol (μmax 0.053 h) than on (R)-propanediol (0.017 h−1) and ethanol (0.027 h−1). From (R, S)-1,2-propanediol-grown cells, an alcohol dehydrogenase was purified. The enzyme was oxygen-labile, NAD-dependent, and decameric; the subunit mol. mass was 48 kDa. The N-terminal amino acid sequence indicated similarity to alcohol dehydrogenases belonging to family III of NAD-dependent alcohol dehydrogenases, the first 21 N-terminal amino acids being identical to those of theDesulfovibrio gigas alcohol dehydrogenase. Best substrates were ethanol and propanol (K m of 0.48 and 0.33 mM, respectively). (R, S)-1,2-Propanediol was a relatively poor substrate for the enzyme, but activities in cell extracts were high enough to account for the growth rate. The enzyme showed a preference for (S)-1,2-propanediol over (R)-1,2-propanediol. Antibodies raised against the alcohol dehydrogenase ofD. gigas showed cross-reactivity with the alcohol dehydrogenase ofDesulfovibrio strain HDv and with cell extracts of six other ethanol-grown sulfate-reducing bacteria.  相似文献   

14.
Methanogenic archaea growing on ethanol or isopropanol as the electron donor for CO2 reduction to CH4 contain either an NADP-dependent or a coenzyme F420-dependent alcohol dehydrogenase. We report here that in both groups of methanogens, the N 5, N 10-methylenetetrahydromethanopterin dehydrogenase and the N 5, N 10-methylenetetrahydromethanopterin reductase, two enzymes involved in CO2 reduction to CH4, are specific for F420. This raised the question how F420H2 is regenerated in the methanogens with an NADP-dependent alcohol dehydrogenase. We found that these organisms contain catabolic activities of an enzyme catalyzing the reduction of F420 with NADPH. The F420-dependent NADP reductase from Methanogenium organophilum was purified and characterized. The N-terminal amino acid sequence showed 42% sequence identity to a putative gene product in Methanococcus jannaschii, the total genome of which has recently been sequenced. Received: 12 May 1997 / Accepted: 1 July 1997  相似文献   

15.
In the wild-type strain of methylotrophic yeast Pichia pinus diauxic growth is observed during cultivation in medium containing a mixture of methanol and ethanol: firstly, slow phase of ethanol utilization is revealed and, secondly, a fast phase of methanol consumption is shown. Diauxic growth is observed also in ecr1 mutant, impaired in ethanol-induced catabolite repression of methylotrophic metabolism enzymes, but the order of utilization of the alcohols is inverted in this mutant. Such succession of alcohols utilization in both strains correlates well with the sequence of synthesis of microbody enzymes which catalyze key reactions of C1- and C2-metabolism. On the contrary, simultaneous utilization of methanol and ethanol from the mixture, as well as synchronous synthesis of both peroxisomal and glyoxisomal enzymes is observed in adh1 mutant which has reduced alcohol dehydrogenase activity. The strong differences between the wild-type strain and adh1 mutant were observed also in the kinetics of specific activity changes for C1-metabolizing enzymes, localized in cytosol. In the wild-type strain during growth on methanol and ethanol mixture such changes correlate with the sequence of alcohol utilization. At the same time, in adh1 mutant the activities of formaldehyde dehydrogenase and formate dehydrogenase during the growth on the alcohols mixture are as high as during growth on methanol only, but the activity of dihydroxyacetone kinase is as low as under the growth on ethanol and is lower than on methanol.  相似文献   

16.
The aim of the present work was to investigate the production of aflatoxin byAspergillus parasiticus and to find out the possible ways to control it. Of 40 food samples collected from Abha region, Saudi Arabia, only 25% were contaminated with aflatoxins. Oil-rich commodities had the highly contaminated commodities by fungi and aflatoxins while spices were free from aflatoxins.Bacillus megatertum andB cereus were suitable for microbiological assay of aflatoxins. Czapek’s-Dox medium was found a suitable medium for isolation of fungi from food samples. The optimal pH for the growth ofA. parasiticus and its productivity of aflatoxin B1 was found at 6.0, while the best incubation conditions were found at 30°C for 10 days. D-glucose was the best carbon source for fungal growth, as well as aflatoxin production. Corn steep liquor, yeast extract and peptone were the best nitrogen sources for both fungal growth and toxin production (NH4)2HPO4 (1.55 gL-1) and NaNO2 (1.6 gL-1) reduced fungal growth and toxin production with 37.7% and 85%, respectively. Of ten amino acids tested, asparagine was the best for aflatoxin B1 production. Zn2+ and Co2+ supported significantly both fungal growth, as well as, aflatoxin B1 production at the different tested concentrations. Zn2+ was effective when added toA. parasiticus growth medium at the first two days of the culture age. The other tested metal ions expressed variable effects depending on the type of ion and its concentration. Water activity (aw) was an important factor controlling the growth ofA. parasiticus and toxin production. The minimum aw for the fungal growth was 0.8 on both coffee beans and rice grains, while aw of 0.70 caused complete inhibition for the growth and aflatoxin B1 production. H2O2 is a potent inhibitor for growth ofA. parasiticus and its productivity of toxins. NaHCO3 and C6H5COONa converted aflatoxin B1 to water-soluble form which returned to aflatoxin B1 by acidity. Black pepper, ciliated heath, cuminum and curcuma were the most inhibitory spices on toxin production. Glutathione, quinine, EDTA, sodium azide, indole acetic acid, 2,4-dichlorophenoxy acetic acid, phenol and catechol were inhibitory for both growth, as well as, aflatoxin B1 production. Stearic acid supported the fungal growth and decreased the productivity of AFB1 gradually. Lauric acid is the most suppressive fatty acid for both fungal growth and aflatoxin production, but oleic acid was the most potent supporter. Vitamin A supported the growth but inhibited aflatoxin B1 production. Vitamins C and D2 were also repressive particularly for aflatoxin production The present study included studying the activities of some enzymes in relation to aflatoxin production during 20-days ofA. parasiticus age in 2-days intervals. Glycolytic enzymes and pyruvate-generating enzymes seems to be linked with aflatoxin B1 production. Also, pentose-phosphate pathway enzymes may provide NADPH for aflatoxin B1 synthesis. The decreased activities of TCA cycle enzymes particularly from 4th day of growth up to 10th day were associated with the increase of aflatoxin B1 production. All the tested enzymes as well as aflatoxin B1 production were inhibited by either catechol or phenol.  相似文献   

17.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

18.
We have developed a single-step method for the purification of NADP+-dependent alcohol dehydrogenase fromEntamoeba histolyticaand NAD+-dependent alcohol dehydrogenase fromSaccharomyces cerevisiae.It is based on the affinity for zinc of both enzymes. The amebic enzyme was purified almost 800 times with a recovery of 54% and the yeast enzyme was purified 30 times with a recovery of 100%. The kinetic constants of the purified enzymes were similar to those reported for other purification methods. With mammalian alcohol dehydrogenase, we obtained a 40-kDa band suggestive of purified alcohol dehydrogenase, but we failed to retain enzymatic activity in this preparation. Our results suggest that the described method is more applicable to the purification of tetrameric alcohol dehydrogenases.  相似文献   

19.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

20.
The final activity of the alcohol dehydrogenase (E.C.1.1.1.1, abbreviated ADH) from germinating pea, isolated by fractionating with ammonium sulphate, chromatography on DEAE cellulose and gel filtration, was 80,000, from bean 25,000 and from lentil 13,500 units per mg protein. Molecular weights of the ADHs are close to each other: pea and bean ADH 60,000, lentil ADH 70,000. The Km values are mutually similar with three enzymes, i.e. of the order of 10−4M for NAD and 10−2M for ethanol. The pH optima lie in the alkaline region. These enzymes catalyse oxidation of a number of monovalent alcohols. At temperatures above 60°C the enzymes are thermally unstable. Stability is enhanced slowly by ethanol but not by NAD. Pyrazol, imidazol and pyridine inhibit plant ADH similarly to the enzyme from horse liver. There is a similarity between plant alcohol dehydrogenases and animal and yeast enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号