首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial oxidation of D-sorbitol tol-sorbose byAcetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding highly concentrated sorbitol (600 g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24 h with a sorbose productivity of 13.40 g/L/h and a final sorbose concentration of 320.48 g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600 g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600 g/L sorbitol at a constant feed rate of 0.36 L/h till the full working capacity of the reactor. The fermentation was completed in 24 h with an enhanced sorbose productivity of 15.09 g/L/h and a sorbose concentration of 332.60 g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.  相似文献   

2.
Microbial oxidation of D-sorbitol to L-sorbose is commercially important since it is the only biochemical process in Vitamin-C manufacture. The main bottleneck in the batch oxidation of D-sorbitol is that the process is severely inhibited by sorbitol. By conducting fed-batch fermentation, the inherent substrate inhibition present in batch fermentation can be eliminated. Batch fermentation with an initial sorbitol concentration of 200 g lу featured a productivity of 14.2 g lу hу and a final sorbose concentration of 200 g lу. Fed-batch fermentation conducted by feeding nutrients containing 600 g lу of sorbitol at a constant feed rate of 0.36 l hу yielded a productivity of 17.7 g lу hу and a final sorbose concentration of 320 g lу.  相似文献   

3.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

4.
Phenylacetaldehyde (PA) can be produced by the oxidation of 2-phenylethanol (PE) through biotransformation. In order to prevent substrate and product inhibitions and the transformation of the PA to phenylacetic acid (PAA), utilization of a two-phase system is very attractive. Gluconobacter oxydans B-72 was used as the microorganism and iso-octane as the solvent. The effect of initial substrate concentration on the PA production was investigated in single- and two-phase systems. In the single-phase system, substrate inhibition occurred above 5 g/l, and in the two-phase system, above 7.5 g/l. Substrate inhibition kinetics were also studied in the two-phase system and kinetic constants were determined as rmax=0.64 g/l min, KM=8.15 g/l, KPA=2.5 g/l. Because it was observed that two-phase system is insufficient to remove the substrate inhibition effect, fed-batch operation was utilised in this study. For 7.5 g/l of PE, 1.65, 3.85, and 7.35 g/l of PA were obtained in the single-phase, two-phase, and two-phase three fed-batch systems, respectively. Effect of biotransformation time, initial substrate concentration, agitation speed, and fed-batch number on the PA production was investigated in a two-phase fed-batch system by the response surface methodology (RSM). The optimum values were found as 3 fed-batch number, 2.75 g/l initial substrate concentration, 150 rpm agitation speed, and 65 min of one batch biotransformation time. In order to verify these results, an experiment was performed at these optimum conditions and 7.10 g/l of PA concentration was obtained.  相似文献   

5.
Liu L  Du G  Chen J  Wang M  Sun J 《Bioresource technology》2008,99(17):8532-8536
This study aimed to enhance hyaluronic acid (HA) production by a two-stage culture strategy based on the modeling of batch and fed-batch culture of Streptococcus zooepidemicus. Batch culture had higher specific HA synthesis rate while fed-batch culture had higher specific cell growth rate. The lower specific HA synthesis rate in fed-batch culture resulted from the competition of cell growth for the common precursors at a low substrate concentration. Based on the modeling of batch and fed-batch culture of S. zooepidemicus, a two-stage culture strategy was proposed to enhance HA production. S. zooepidemicus were cultured in a fed-batch mode with sucrose concentration maintained at 1.0+/-0.2g/L during 0-8h and then batch culture was performed during 8-20h with an initial sucrose concentration of 15g/L. With the proposed two-stage culture strategy, HA production was increased to 6.6g/L compared with 5.0g/L in batch culture with the same total sucrose. The enhanced HA production by the proposed two-stage culture strategy resulted from the decreased inhibition of cell growth and the increased transformation rate of sucrose to HA.  相似文献   

6.
The basic parameters were studied influencing the conversion of orbitol to sorbose by Gluconobacter oxydans(industrial strain from FARMAKON Co., Czechoslovakia). The most effective conversion in the stationary phase was reached at pH 5.0, no inhibitory effect of sorbitol in a concentration ranging from 20 to 200 g/l and a minimum inhibitory effect of the sorbose concentration up to 200 g/l were observed. According to the optimum conditions mentioned above the optimized course of the fed-batch cultivation was proposed. The final concentration of sorbose of 410 g/l was reached after 36 hours.  相似文献   

7.
Fed-batch culture is the mode of operation of choice in industrial baker’s yeast fermentation. The particular mode of culture, operated at stable glucose and maltose concentration levels, was employed in this work in order to estimate important kinetic parameters in a process mostly described in the literature as batch or continuous culture. This way, the effects of a continuously falling sugar level during a batch process were avoided and therefore the effects of various (stable) sugar levels on growth kinetics were evaluated. Comparing the kinetics of growth and the inhibition by the substrate in cultures grown on glucose, which is the preferential sugar source for Saccharomyces cerevisiae, and maltose, the most common sugar source in industrial media for baker’s yeast production, a milder inhibition effect by the substrate in maltose-grown cells was observed, as well as a higher yield coefficient. The observed sugar inhibition effect in glucostat cultures was taken into account in modeling substrate inhibition kinetics. The inhibition coefficient K i increased with increasing sugar concentration levels, but it appeared to be unaffected by the type of substrate and almost equal for both substrates at elevated concentration levels.  相似文献   

8.
The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures was examined, using on-line off-gas analyses to measure the oxygen and carbon dioxide consumption rates continuously. A cell suspension from continuous cultures at steady state was used as the inoculum. It was observed that a dynamic phase occurred in the initial phase of the experiment. In this phase the bacterial ferrous iron oxidation and growth were uncoupled. After about 16 h the bacteria were adapted and achieved a pseudo-steady state, in which the specific growth rate and oxygen consumption rate were coupled and their relationship was described by the Pirt equation. In pseudo-steady state, the growth and oxidation kinetics were accurately described by the rate equation for competitive product inhibition. Bacterial substrate consumption is regarded as the primary process, which is described by the equation for competitive product inhibition. Subsequently the kinetic equation for the specific growth rate, μ, is derived by applying the Pirt equation for bacterial substrate consumption and growth. The maximum specific growth rate, μ max, measured in the batch culture agrees with the dilution rate at which washout occurs in continuous cultures. The maximum oxygen consumption rate, q O2,max, of the cell suspension in the batch culture was determined by respiration measurements in a biological oxygen monitor at excess ferrous iron, and showed changes of up to 20% during the course of the experiment. The kinetic constants determined in the batch culture slightly differ from those in continuous cultures, such that, at equal ferric to ferrous iron concentration ratios, biomass-specific rates are up to 1.3 times higher in continuous cultures. Received: 8 February 1999 / Accepted: 17 February 1999  相似文献   

9.
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L?1 days?1 reached the maximum cell concentration of 2,393 ± 241 mg L?1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.  相似文献   

10.
Pseudomonas oxalaticus OX1 has been grown in a mineral salts medium with oxalate or formate as the sole source of carbon and energy. At concentrations of these substrates above 50mm inhibition of growth was indicated by a long and variable lag phase in batch culture. This inhibition was further studied by estimating maximum specific growth rates at different substrate concentrations using the extended culture technique for control of the substrate concentration. With formate, inhibition became apparent at substrate concentrations above 20mm, whereas oxalate inhibited growth at concentrations above 15mm. Complete inhibition was not observed even at concentrations of 100mm. A number of inhibition functions were fitted with the experimental data using computer analysis. The results indicated that the Haldane equation was the simplest function to describe quantitatively the kinetics of the observed substrate inhibition. Studies on the rate of oxygen uptake at different concentrations of oxalate indicated that respiration was much more sensitive to inhibition than growth. However with formate, inhibition of respiration was not observed up to concentrations of 50mm, indicating that different mechanisms may underlie the observed growth inhibition by the two substrates.  相似文献   

11.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

12.
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source.  相似文献   

13.
The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production.  相似文献   

14.
《Process Biochemistry》2007,42(1):52-56
A improved pH-control fed-batch strategy for Bacillus thuringiensis subsp. darmstadiensis 032 producing thuringiensin was developed based on the analysis of the batch culture, constant rate fed-batch cultures and the original pH-control fed-batch. Having considered the pH variation and the glucose consumption status, the pH was adjusted from 6.5 to 7.0 by adding base in the late cultivation period of batch culture, and then the pH was kept at 7.0 by glucose feeding. The feeding was terminated when the pH could not be controlled by glucose feeding anymore. The proposed fed-batch strategy effectively avoided underfeeding or overfeeding, and it increased the thuringiensin yield and YP/X by 89.51% and 103.2% compared to that of the batch culture, respectively.  相似文献   

15.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

16.
The effects of cultural parameters such as carbon and nitrogen source and environmental factors including temperature and pH were investigated on spore and mycelial yield of Trichoderma viride, which has potential as a biocontrol agent against species of Fusarium in batch culture and fed-batch culture where there was limiting nutrient. The results obtained indicated that growth and sporulation of T. viride were greatly influenced by various carbon and nitrogen sources, and by environmental factors such as pH and temperature. Mannitol, wheat bran and rice bran as sole carbon sources appear to stimulate high mycelial growth and spore yield in fed-batch culture. Growth and sporulation were also favoured by NaNO3, peptone and NH4SO4 as the nitrogen sources in fed-batch and batch cultures. Maximum growth and sporulation was between pH 4.5 and 6.0. Temperatures between 30 and 37 °C were good for mycelium growth of T. viride while temperatures between 30 to 45 °C were good for sporulation. The amount of spore and mycelium produced and the time required for attainment of maximum spore yield increased with increasing carbon and nitrogen source in batch culture. The final spore yield obtained in fed-batch culture was two times higher than the apparent spore-carrying capacity of batch culture. These results show that T. viride is capable of growing and sporulating with varied nutritional and environmental conditions, and, therefore, this strain of T. viride may be useful as a biocontrol agent under diverse physiological and environmental conditions.  相似文献   

17.
The batch fermentations were conducted using lactose as the substrate at pH 6.5 and temperature 30°C. Average batch kinetic data was eventually used to develop an unstructured mathematical model. The kinetic parameters of the model were determined by non-linear regression technique using the batch experimental results. Parametric sensitivity analysis showed the maximum specific substrate consumption rate (rSmax) and the maintenance energy constant (mS) to be the most sensitive parameters. The experimental observations in batch fermentation were close to the model predictions. The batch model was extrapolated to identify nutrient feeding strategies, which were tested successfully for two different fed-batch fermentations. It demonstrated enhanced propionic acid productivity. The developed model was found suitable for the design of feeding strategies to increase propionic acid production in fed-batch mode of reactor operation.  相似文献   

18.
Summary A simple fed-batch system which controls substrate feeding by measuring the CO2 produced during the fermentation, was developped. This Fed-batch approach allowed high production of 1,3-propanediol from glycerol by Clostridium butyricum by avoiding substrate inhibition phenomena. 65 g/l of 1,3-propanediol was produced with a productivity of 1.21 g/l.h and a yield of 0.56. The concentration of 1,3-propanediol obtained and the productivity were significantly higher than those reached in batch culture.  相似文献   

19.
Vibrio gazogenes ATCC 29988 growth and prodigiosin synthesis were studied in batch culture on complex and defined media and in chemostat cultures on defined medium. In batch culture on complex medium, a maximum growth rate of 0.75 h−1 and a maximum prodigiosin concentration of 80 ng of prodigiosin · mg of cell protein−1 were observed. In batch culture on defined medium, maximum growth rates were lower (maximum growth rate, 0.40 h−1), and maximum prodigiosin concentrations were higher (1,500 ng · mg of protein−1). In batch culture on either complex or defined medium, growth was characterized by a period of logarithmic growth followed by a period of linear growth; on either medium, prodigiosin biosynthesis was maximum during linear growth. In batch culture on defined medium, the initial concentration of glucose optimal for growth and pigment production was 3.0%; higher levels of glucose suppressed synthesis of the pigment. V. gazogenes had an absolute requirement for Na+; optimal growth occurred in the presence of 100 mM NaCl. Increases in the concentration of Na+ up to 600 mM resulted in further increases in the concentration of pigment in the broth. Prodigiosin was synthesized at a maximum level in the presence of inorganic phosphate concentrations suboptimal for growth. Concentrations of KH2PO4 above 0.4 mM caused decreased pigment synthesis, whereas maximum cell growth occurred at 1.0 mM. Optimal growth and pigment production occurred in the presence of 8 to 16 mg of ferric ion · liter−1, with higher concentrations proving inhibitory to both growth and pigment production. Both growth and pigment production were found to decrease with increased concentrations of p-aminobenzoic acid. The highest specific concentration of prodigiosin (3,480 ng · mg protein−1) was observed in chemostat cultures at a dilution rate of 0.057 h−1. The specific rate of prodigiosin production at this dilution rate was approximately 80% greater than that observed in batch culture on defined medium. At dilution rates greater than 0.057 h−1, the concentration of cells decreased with increasing dilution rate, resulting in a profile comparable to that expected for linear growth kinetics. No explanation could be found for the linear growth profiles obtained for both batch and chemostat cultures.  相似文献   

20.
Production of methane by Methanosarcina barkeri from H2-CO2 was studied in fed-batch culture under phosphate-limiting conditions. A transition in the kinetics of methanogenesis from an exponentially increasing rate to a constant rate was due to depletion of phosphate from the medium. The period of exponentially increasing rate of methanogenesis was extended by increasing the initial concentration of phosphate in the medium. Addition of phosphate during the constant period changed the kinetics to an exponentially increasing rate of methanogenesis, indicating the reversibility of phosphate depletion. The relation between methanogenesis and growth of M. barkeri was investigated by measuring the incorporation of phosphorus, supplied as KH232PO4, in the medium. At a low (1 μM) initial concentration of phosphate in the medium and during the constant period of methanogenesis, there was no net cell growth. At a higher (10 μM) initial concentration of phosphate, cell growth proceeded linearly with time after phosphate had been removed from the medium by uptake into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号