首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Summary We have cloned the seven genes that are responsible for biosynthesis of the antibiotic fortimicin A (FTM A) using a recently developed self-cloning system that employs the plasmid vector pMO116 for Micromonospora olivasterospora. Five chimeric plasmids that restored FTM A production in M. olivasterospora mutants blocked at different biosynthetic steps were isolated by shotgun cloning. Secondary transformation using other non-producing mutants showed that two additional FTM A biosynthetic genes were included on these plasmids, and that at least four of the genes were clustered. Interestingly AN38-1, a non-producing mutant that had a defect in dehydroxylation of a precursor of FTM A, was complemented by the DNA fragment containing a neomycin resistance gene that had been cloned from a neomycin-producing strain (Micromonospora sp. FTM A non-producing strain) in the course of constructing the plasmid vector pM0116. These results clearly show that this novel gene cloning system in Micromonospora is of practical use.  相似文献   

2.
A gene library constructed from large (20 kb) fragments of total DNA from the geldananmycin-producing strain Streptomyces hygroscopicus 3602 cloned in the plasmid vector pIJ61 were used to transform S. lividans TK24. Three transformants of about 800 tested were found to have acquired the ability to produce an antibiotic lethal to a geldanamycin-sensitive strain of Bacillus subtilis. The plasmids isolated from these transformants, pIA101, pIA102 and pIA103, each contained an insert of 15 kb. A 4.5 kb DNA fragment from the insert in pIA102 hybridised to DNA from S. hygroscopicus 3602 and to DNA encoding part of the erythromycin polyketide synthase but not to S. lividans TK24 DNA. The integration-defective phage vector C31 KC515 containing this 4.5 kb fragment was able to lysogenise S. hygroscopicus 3602 to produce lysogens defective in geldanamycin production. Loss of the prophage restored the ability to produce geldanamycin. Extracts of fermentation broth cultures of S. lividans containing pIA101, pIA102 and pIA102 and pIA103 analysed by thin-layer chromatography (TLC) contained compounds identical or very similar to purified geldanamycin, which were not present in S. lividans. These compounds showed a mass spectrum indistinguishable from geldanamycin. The evidence suggests that the clones contain DNA sequences encoding functions required for geldanamycin biosynthesis including components of the polyketide synthase.  相似文献   

3.
4.
The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.  相似文献   

5.
orf7 (oppA1) and orf15 (oppA2) are located 8 kb apart in the clavulanic acid gene cluster of Streptomyces clavuligerus and encode proteins which are 48.0% identical. These proteins show sequence similarity to periplasmic oligopeptide-binding proteins. Mutant S. clavuligerus oppA1::acc, disrupted in oppA1, lacks clavulanic acid production. Clavulanic acid production is restored by transformation with plasmid pIJ699-oppA1, which carries oppA1, but not with the multicopy plasmid pIJ699-oppA2, which carries oppA2. The mutant S. clavuligerus oppA2::aph also lacks clavulanic acid production, shows a bald phenotype, and overproduces holomycin (5). Clavulanic acid production at low levels is restored in the oppA2-disrupted mutants by transformation with plasmid pIJ699-oppA2, but it is not complemented by the multicopy plasmid pIJ699-oppA1. Both genes encode oligopeptide permeases with different substrate specificities. The disrupted S. clavuligerus oppA2::aph is not able to grow on RPPGFSPFR (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg; bradykinin), but both mutants grow on VAPG (Val-Ala-Pro-Gly) as the only nitrogen source, indicating differences in the peptide bound by the proteins encoded by both genes. The null S. clavuligerus oppA1::acc and S. clavuligerus oppA2::aph mutants are more resistant to the toxic tripeptide phosphinothricyl-alanyl-alanine (also named bialaphos) than the wild-type strain, suggesting that this peptide might be transported by these peptide-binding proteins.  相似文献   

6.
In two separate studies a BclI-generated DNA fragment coding for the enzyme tyrosinase, responsible for melanin synthesis, was cloned from Streptomyces antibioticus DNA into two SLP1.2-based plasmid vectors (pIJ37 and pIJ41) to generate the hybrid plasmids, designated pIJ700 and pIJ701, using S. lividans 66 as the host. The fragment (1.55 kb) was subcloned into the multicopy plasmid pIJ350 (which carries thiostrepton resistance and has two non-essential BclI sites) to generate four new plasmids (pIJ702-pIJ705) with the tyrosinase insert located in either orientation at each site. All six plasmids conferred melanin production (the Mel+ phenotype) on their host. As in the S. antibioticus parent, strains of S. lividans carrying the gene specifying tyrosinase synthesis possessed an enzyme activity which was inducible. Most of the tyrosinase activity was secreted during growth of S. antibioticus; in contrast, the majority remained intracellular in the S. lividans clones. The specific activity of the induced tyrosinase activity (intracellular) was higher (up to 36-fold) when the gene was present on the multicopy vector in comparison with its location on the low copy plasmids, pIJ700 or pIJ701, or in S. antibioticus. Restriction mapping of the tyrosinase fragment in pIJ702 revealed endonuclease cleavage sites for several enzymes, including single sites for BglII, SphI and SstI that are absent from the parent vector (pIJ350). Insertion of DNA fragments at any one of these sites abolished the Mel+ phenotype. The results indicate that pIJ702 is a useful cloning vector with insertional inactivation of the Mel+ character as the basis of clone recognition.  相似文献   

7.
Carbapenem non-producing mutants were isolated from Streptomyces fulvoviridis and divided into six cosynthesis groups. By using one of the mutants as the host and plasmid pIJ385 as the vector, we cloned carbapenem biosynthetic genes from the parental S. fulvoviridis strain. A cloned 6-kb DNA fragment complemented the defects of three mutants each of which had a mutation in different genes. Southern blot hybridization using the cloned 6-kb fragment as probe showed the presence of the nucleotide sequences homologous to the probe in other carbapenem-producing Streptomyces spp. In addition, Streptomyces griseus, a carbapenem non-producer, possessed the sequence homologous to the probe and showed co-synthesis phenomena with some of the carbapenem non-producing mutants of S. fulvoviridis.  相似文献   

8.
Summary The Streptomyces albus G genes (salR and salM) for the class II restriction enzyme SalI (SalGI) and its cognate modification enzyme were cloned in Streptomyces lividans 66. Selection was initially for the salR gene. From a library of S. albus G DNA in the high copy number plasmid pIJ486 several clones of S. lividans were obtained that were resistant to phage C31 unmodified at the many SalI sites in its DNA, but were sensitive to modified phages last propagated on a restriction-deficient, modification-proficient mutant of S. albus G. SalI activity was detected in cell-free extracts of the clones, though only at levels comparable with that in S. albus G. Five different recombinant plasmids were isolated, with inserts of 5.6, 5.7, 8.9, 10 and 18.9 kb that contained a common region of 4.5 kb. These plasmids could not be digested by SalI, although the vector has four recognition sites for this enzyme, indicating that the salM gene was also cloned and expressed. Subcloning experiments in S. lividans indicated the approximate location of salR and salM, and in Escherichia coli led to detectable expression of salM but not of salR. A variety of previously isolated S. albus G mutants affected in aspects of SalI-specific restriction and modification were complemented by the cloned DNA; they included a mutant temperature-sensitive for growth apparently because of a mutation in salM. Southern blotting showed that DNA homologous to the cloned sal genes was present in Xanthomonas and Rhodococcus strains, but not detectably in Herpetosiphon strains, all of which produce SalI isoschizomers.  相似文献   

9.
Summary The cloning of five DNA segments carrying at least seven genes (fms1, fms3, fms4, fms5, fms7, fms11, and fms12) that participate in fortimicin A (astromicin) biosynthesis was described previously. These DNA fragments were used to screen a cosmid library of genomic DNA in order to examine if these biosynthetic genes are clustered in Micromonospora olivasterospora. One cosmid clone (pGLM990) was obtained, which hybridized to all the probes. Complementation analysis, using mutants blocked at various steps and chimeric plasmids subcloned from pGLM990, showed that three additional genes (fms8, fms10, and fms13) are present in pGLM990. A gene conferring self-resistance to the antibiotic, which was independently cloned in Streptomyces lividans, using the plasmid vector pIJ702 was also found to be linked to the cluster of biosynthetic genes. Thus, at least ten biosynthetic genes and a self-defense gene are clustered in a chromosomal region of about 27 kb in M. olivasterospora. Interestingly, the fms8 gene which participates in the dehydroxylation step of fortimicin A biosynthesis was found to have homology with a neomycin resistance gene nmrA from the neomycin-producing Micromonospora sp. MK50. Studies using a cell-free extract of the fms8 mutant and its parent strain showed that the enzyme encoded by fms8 phosphorylates a biosynthetic precursor, fortimicin KK1, in the presence of ATP. Thus the dehydroxylation reaction is suggested to occur via the phosphorylation of the target hydroxyl group. DNA regions homologous to fms genes were found in Micromonospora sp. SF-2098 and Dactylosporangium matsuzakiense, both producers of fortimicin group antibiotics.  相似文献   

10.
Summary In the yeast Saccharomyces cerevisiae, some thermosensitive (ts) mutants have been shown to be impaired in pre-mRNA splicing (prp mutants). From a yeast genomic library, we have isolated plasmids that complement prp6 or prp9 is mutations. These plasmids also complement the is growth defect of additional independent mutants identified as new prp6 and prp9 is alleles, indicating that the cloned DNAs encode PRP6 and PRP9 genes, respectively. Here, we describe the restriction maps of these loci which are localized on chromosome II and IV, respectively. The limits of open reading frames (ORFs) within the cloned inserts have been determined using a linker insertion strategy combined with the is complementation assay. Double-strand DNA sequencing was also performed directly on the yeast expression vector from the inserted linkers. Gene disruption experiments demonstrate that both genes are essential for viability.  相似文献   

11.
Plasmid pIJ699, a multi-copy positive-selection vector for Streptomyces   总被引:22,自引:0,他引:22  
T Kieser  R E Melton 《Gene》1988,65(1):83-91
  相似文献   

12.
We cloned a DNA fragment directing synthesis of A-factor from the total cellular DNA of streptomycin-producing Streptomyces bikiniensis on the plasmid vector pIJ385 . Introduction of the recombinant plasmid ( pAFB1 ) into A-factor-deficient S. bikiniensis and Streptomyces griseus mutants led to A-factor production in the host cells, as a result of which streptomycin production, streptomycin resistance, and spore formation of these mutants were simultaneously restored. The plasmid pAFB1 also complemented both afsA and afsB mutations of Streptomyces coelicolor A3(2). These results indicated that the cloned DNA fragment contained the genetic determinant of A-factor biosynthesis. The cloned fragment, when carried on a multicopy vector plasmid, induced production of a large amount of A-factor in several Streptomyces hosts. In Southern blot DNA/DNA hybridization analyses with a trimmed 5-kilobase fragment containing the intact A-factor determinant as probe, total cellular DNA from A-factor-deficient mutants gave no positive hybridization. The DNA blot experiment also showed a wide distribution of sequences homologous to the S. bikiniensis A-factor determinant among most, but not all, A-factor-producing actinomycetes with a varying extent of homology and the absence of these sequences from most A-factor nonproducers .  相似文献   

13.
Summary Streptomyces lividans ISP 5434 contains four small high copy number plasmids: pIJ101 (8.9 kb), pIJ102 (4.0 kb), pIJ103 (3.9 kb) and pIJ104 (4.9 kb). The three smaller species appear to be naturally occurring deletion variants of pIJ101. pIJ101 and its in vivo and in vitro derivatives were studied after transformation into S. lividans 66.pIJ101 was found to be self-transmissible by conjugation, to elicit lethal zygosis and to promote chromosomal recombination at high frequency in both S. lividans 66 and S. coelicolor A3(2). A restriction endonuclease cleavage map of pIJ101 was constructed for 11 endonucleases; sites for five others were lacking. Many variants of pIJ101 were constructed in vitro by inserting DNA fragments determining resistance to neomycin, thiostrepton or viomycin, and having BamHI termini, into MboI or BclI sites on the plasmid, sometimes with deletion of segments of plasmid DNA. The physical maps of these plasmids were related to their phenotypes in respect of lethal zygosis and transfer properties. In vivo recombination tests between pairs of variant plasmids were also done. These physical and genetic studies indicated that determinants of conjugal transfer occupy less than 2.1 kb of the plasmid. A second segment is required for spread of the plasmid within a plasmid-free culture to produce the normal lethal zygosis phenotype: insertion of foreign DNA in this region caused a marked reduction in the diameter of lethal zygosis zones. The minimum replicon was deduced to be 2.1 kb or less in size; adjacent to this region is a 0.5 kb segment which may be required for stable inheritance of the plasmid. The copy number of several derivatives of pIJ101 in S. lividans 66 was between 40 and 300 per chromosome and appeared to vary with the age or physiological state of the culture. pIJ101 derivatives have a wide host range within the genus Streptomyces: 13 out of 18 strains, of diverse species, were successfully transformed.Knowledge of dispensable DNA segments and the availability of restriction sites for the insertion of DNA, deduced from the properties of plasmids carrying the E. coli plasmid pACYC184 introduced at various sites, was used in the construction of several derivatives of pIJ101 suitable as DNA cloning vectors. These were mostly designed to be non-conjugative and to carry pairs of resistance genes for selection. They include a bifunctional shuttle vector for E. coli and Streptomyces; a Streptomyces viomycin resistance gene of this plasmid is expressed in both hosts.  相似文献   

14.
Studies were made of naturally occurring plasmids hosted in Streptomyces strains isolated from two different terrestrial ecosystems: an agricultural field and a protected forest area. Six out of the 147 screened isolates contained plasmids. The strains containing these plasmids were all isolated from the agricultural soil. Plasmids were not found among the strains isolated from the forest area. Cross hybridization of the six newly isolated plasmids revealed very high similarities between four of them. However, no similarities were found between the six newly isolated plasmids and well studied streptomycete plasmids such as pIJ101 and SCP2*. The host strains of the four similar plasmids belonged to three different species S. anulatus, S. rochei and S. diastaticus. This implies a possible conjugative transfer of these plasmids within the streptomycete population in the agricultural area. The reason for the absence of streptomycete plasmids from the populations derived from the forest area is discussed.  相似文献   

15.
When Streptomyces parvulus ATCC 12434 was crossed with a plasmid-free S. lividans 66 derivative, some S. lividans exconjugants contained plasmid DNA, pIJ110 (13.6 kb). In a similar way, pIJ408 (15.05 kb) was found after mating S. glaucescens ETH 22794 with S. lividans. CCC DNA was not visualized in the donor strains. pIJ110 and pIJ408 each originates from a larger replicon, probably the chromosome, of S. parvulus or S. glaucescens. Restriction maps of pIJ110 and pIJ408, each for 10 enzymes, were derived. Derivatives of each plasmid were constructed carrying antibiotic-resistance markers (thiostrepton or viomycin) in a nonessential region and each plasmid was cloned into an Escherichia coli plasmid vector (pBR327 or pBR325). pIJ110 and pIJ408 resemble, in their origin, the previously known SLP1 plasmids (such as SLP1.2) which come from integrated sequences in the chromosome of S. coelicolor A3(2). pIJ110 and pIJ408, like SLP1.2, are self-transmissible, elicit the so-called lethal zygosis reaction (pock formation) and mobilize chromosomal markers. The three plasmids, in spite of their very different restriction maps, were found to be related: SLP1.2 and pIJ110 were strongly incompatible, showed complete resistance to each other's lethal zygosis reaction, and shared a segment of DNA with a considerable degree of cross-hybridization; pIJ110 and pIJ408 were weakly incompatible and showed partial resistance to lethal zygosis and a weak DNA cross-hybridization; pIJ408 and SLP1.2 were only distantly related on these criteria. pIJ110, pIJ408, and SLP1.2 hybridized with varying degrees of homology in Southern transfer experiments to DNA from 7 out of 13 of an arbitrary collection of wild-type streptomycetes. Integrated sequences capable of forming plasmids after transfer to S. lividans may therefore be widespread in the genus Streptomyces.  相似文献   

16.
Optimal conditions for protoplast formation in the moenomycin-producing strain S712 of S. bambergiensis were developed. The protoplasts of this strain were transformed with DNA of plasmids pVG101 and pIJ350. The plasmids isolated from the transformants and designated as pVG101SB and pIJ350SB respectively were used for transformation of the initial culture protoplasts. No significant increase in the transformation efficiency was observed. Studies with the plasmid retransformation from S. bambergiensis S712 to S. lividans 66 and vice verse were conducted. Limitation of the plasmid replication during the retransformation in these strains was not detected. Partial restriction analysis of plasmids pVG101 and pVG101SB as well as pIJ350 and pIJ350SB showed that the used restriction enzymes had the same effect on the respective plasmids. Genetic stability of the plasmids in S. bambergiensis S712 was studied. It is concluded that plasmids pVG101 and pIJ350 can be used as vector molecules for this strain.  相似文献   

17.
S Horinouchi  O Hara    T Beppu 《Journal of bacteriology》1983,155(3):1238-1248
A-factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone), an autoregulating factor originally found in Streptomyces griseus, is involved in streptomycin biosynthesis and cell differentiation in this organism. A-factor production is widely distributed among actinomycetes, including Streptomyces coelicolor A3(2) and Streptomyces lividans. A chromosomal pleiotropic regulatory gene of S. coelicolor A3(2) controlling biosynthesis of A-factor and red pigments was cloned with a spontaneous A-factor-deficient strain of S. lividans HH21 and plasmid pIJ41 as a host-vector system. The restriction endonuclease KpnI-digested chromosomal fragments were ligated into the plasmid vector and introduced by transformation into the protoplasts of strain HH21. Three red transformants thus selected were found to produce A-factor and to carry a plasmid with the same molecular weight, and a 6.4-megadalton fragment was inserted in the KpnI site of pIJ41. By restriction endonuclease mapping and subcloning, a restriction fragment (1.2 megadaltons, approximately 2,000 base pairs) bearing the gene which causes concomitant production of A-factor and red pigments was determined. The red pigments were identified by thin-layer chromatography and spectroscopy to be actinorhodin and prodigiosin, both of which are the antibiotics produced by S. coelicolor A3(2). The cloned fragment was introduced into the A-factor-negative mutants (afs) of S. coelicolor A3(2) by using pIJ702 as the vector, where it complemented one of these mutations, afsB, characterized by simultaneous loss of A-factor and red pigment production. We conclude that the cloned gene pleiotropically and positively controls the biosynthesis of A-factor, actinorhodin, and prodigiosin.  相似文献   

18.
A 7.3 kbp DNA fragment, encompassing the erythromycin (Em) resistance gene (ermE) and a portion of the gene cluster encoding the biosynthetic genes for erythromycin biosynthesis in Saccharopolyspora erythraea (formerly Streptomyces erythraeus) has been cloned in Streptomyces lividans using the plasmid vector pIJ702, and its nucleotide sequence has been determined using a modified dideoxy chain-termination procedure. In particular, we have examined the region immediately 5′ of the resistance determinant, where the tandem promoters for ermE overlap the promoters for a divergently transcribed coding sequence (ORF). Disruption of this ORF using an integrational pIJ702-based plasmid vector gave mutants which were specifically blocked in erythromycin biosynthesis, and which accumulated 3-O-α-L-mycarosylerythronolide B: this behaviour is identical to that of previously described eryC1 mutants. The eryC1-gene product, a protein of subunit Mr 39200, is therefore involved either as a structural or as a regulatory gene in the formation of the deoxyamino-sugar desosamine or in its attachment to the macro-lide ring.  相似文献   

19.
It was shown that S. bambergiensis S800 was genetically instable with respect to the property of the antibiotic production (Ant) while in strain S712 of S. bambergiensis this property was stable. Transformation of S. bambergiensis protoplasts with pIJ350 plasmid DNA and analysis of the transformants screening revealed induction of the Ant instability in both the strains. In case of plasmids pVG101 and pIJ943 this effect was not shown. Analysis of the S800 (pIJ350) transformant screening revealed five groups of mutants differing in the antibiotic production level and the presence of pIJ350 plasmid. Restriction analysis of the total DNA of the mutants showed that there were large deletions in the genome of two of them. Retransformation of the mutants with pIJ350 plasmid DNA showed that in all the cases induction of the instability was lacking. The behaviour of the spontaneous mutants Ant- of strain S800 with respect to pIJ350 plasmid was analogous to that of the mutants Ant- from the transformant S800 (pIJ350) screening. A hypothetic model for the determinant incompatibility with pIJ350 plasmid genetically linked to the Ant property in the genome of S. bambergiensis and unstable in strain S800 was proposed.  相似文献   

20.
A geldanamycin (GDM)-producing strain, Streptomyces hygroscopicus 17997, was isolated from the soil of Yunnan, China, by the researchers of the Institute of Medicinal Biotechnology, CAMS & PUMC. GDM is an ansamycin antibiotic, which has the ability to bind with Hsp90 (heat shock protein 90) and alter its function. Hsp90 plays a key role in regulating the physiology of cells exposed to environmental stress and in maintaining the malignant phenotype of tumor cells. As an inhibitor of Hsp90, GDM possesses potent antitumoral and antiviral bioactivity, but the hypatotoxicity and poor solubility in water limit its clinical use. To accomplish the structural modification of GDM by genetic means, an attempt to obtain the biosynthetic gene cluster of GDM from S. hygroscopicus 17997 was made. In this study, a pair of primers was designed according to a conserved sequence of one of the possible post-PKS (polyketides synthase) modification genes, the carbamoyltransferase (CT) gene (gdmN) in GDM biosynthesis. The 732-bp PCR product was obtained from the S. hygroscopicus 17997 genomic DNA. Through the colony-PCR Binary Search Method, using the CT gene primers, six positive cosmid clones, CT1-6, were identified from the S. hygroscopicus 17997 cosmid genomic library. The CT-4 positive cosmid was then sub-cloned and sequenced. Approximately 28.356 kb of foreign gene sequence from CT-4 cosmid and by further PCR extension reaction was obtained. According to BLAST analysis, this sequence contains 13 possible ORFs, and they are believed to be involved in GDM production. The obtained possible GDM biosynthetic gene cluster in S. hygroscopicus 17997 will facilitate the further functional analysis of the genes and the modification of the structure of GDM through combinatorial biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号