首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of C57BL/6J (B6) murine splenocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes NK cells, CTL precursors, and the capacity to cause lethal graft-vs-host disease (GVHD) in irradiated B6 X DBA/2 F1 mice. In contrast, alloantigen-induced L3T4(+) Th cell function has been shown to be relatively preserved after exposure to this agent. The present studies assessed the effects of Leu-Leu-OMe treatment of donor cells on induction of lethal GVHD in other murine strain combinations. When irradiated B6 X CBAF1 mice were infused with T and NK cell-depleted B6 bone marrow cells and 3 to 30 X 10(6) B6 spleen cells, uniformly lethal GVHD was observed. However, B6 X CBAF1 recipients of T and NK-depleted B6 bone marrow cells and similar numbers of Leu-Leu-OMe-treated B6 spleen cells demonstrated 90 to 100% long term survival. In contrast, Leu-Leu-OMe treatment of B6 donor cells had no beneficial effect on mortality rates in irradiated (B6 X B6-C-H-2bm12)F1 (B6 X bm12F1) recipients. When B6 spleen cells were stimulated in vivo or in vitro with either B6 X CBAF1 or B6 X bm12F1 stimulator cells, the capacity to generate alloantigen-specific CTL was abolished comparably by Leu-Leu-OMe treatment. Thus, the dramatic difference between the effects of Leu-Leu-OMe treatment of B6 spleen cells on the course of GVHD in B6 x CBAF1 and class II MHC only disparate B6 x bm12F1 recipients could not be explained by unique resistance of bm12-specific CTL precursors to Leu-Leu-OMe. These findings indicate that T cell effector mechanisms distinct from classic cell-mediated cytotoxicity are sufficient to generate lethal GVHD in class II MHC only disparate B6----B6 X bm12F1 mice.  相似文献   

2.
The phenotype of T cells that initiate graft-vs-host disease (GVHD) in response to minor histocompatibility antigens (minor HA) was determined in three H-2 compatible strain combinations by using negative selection with monoclonal antibodies to Lyt-2 and L3T4 antigens to test the hypothesis that Lyt-2-positive T cells alone initiate GVHD. The phenotype of T cells required to initiate GVHD was different in each of the three strain combinations studied. Both Lyt-2+ and L3T4+ LP spleen cells were necessary to cause lethal GVHD in C57BL/6 recipients. In the reciprocal transplant, Lyt-2+, but not L3T4+ C57BL/6 spleen cells were sufficient to initiate GVHD in LP recipients. In contrast, L3T4+, but not Lyt-2+ B10.D2 spleen cells were found to initiate GVHD in BALB/c recipients. The optimal response to minor HA requires both Lyt-2+ and L3T4+ T cells because a mixture of the two subsets of spleen cells resulted in a more severe form of GVHD than either subset alone in all three strain combinations studied. This study demonstrates that L3T4+ cells participate in the initiation of GVHD in response to minor HA. The dominant T cell subset that initiates GVHD varies with the specific strain combination tested. The specific minor HA expressed in the transplant recipient, the H-2 type, and possibly non-major histocompatibility complex immune response genes of the donor strain appear to determine the phenotype of the initiator T cells.  相似文献   

3.
Treatment of murine lymphocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes natural killer cells, cytotoxic T lymphocyte precursors, and the capacity to cause lethal graft-vs-host disease, whereas bone marrow stem cell function and alloantigen-induced L3T4+ T helper function remains intact. The present studies assess the immunocompetence of allogeneic bone marrow chimeras established by reconstituting irradiated (C57BL/6 X DBA/2)F1 (B6D2F1) mice with Leu-Leu-OMe-treated C57BL/6 (B6) bone marrow and spleen cells. Spleen cells from such chimeras were found to have normal B and T cell mitogenic responses. Furthermore, levels of natural-killer cell function were comparable to those observed in B6----B6 syngeneic radiation chimeras established without Leu-Leu-OMe treatment of donor cells. Spleen cells from B6----B6D2F1 mice were identical with B6----B6 or B6 mice in allostimulatory capacity and thus contained no discernible cells of non-H-2b phenotype. Whereas B6----B6D2F1 spleen cells demonstrated alloproliferative and allocytotoxic responses toward H-2k bearing spleen cells, no H-2d specific proliferative or cytotoxic responses could be elicited. B6----B6D2F1 spleen cells did not suppress the generation of anti-H-2d or anti-H-2k proliferative or cytotoxic responses from control B6 spleen cells. Furthermore, addition of rat concanavalin A supernatants did not reconstitute anti-H-2d responses of B6----B6D2F1 chimeric spleen cells. Thus, Leu-Leu-OMe treatment of B6 donor cells not only prevents lethal graft-vs-host disease, but also permits establishment of long-lived parent----F1 chimeras that are selectively tolerant of host H-2 disparate alloantigens, but fully immunocompetent with respect to natural killer cell function, B and T cell mitogenesis, and anti-third party alloresponsiveness.  相似文献   

4.
The inoculation of B6D2F1 mice with T lymphocytes from the C57BL/6 parental strain induces an "immunosuppressive" graft-vs-host reaction (B6 GVH), whereas inoculation of T cells from the other, DBA/2 parental strain induces an "immunostimulatory" GVH reaction and a lupus-like disease (DBA GVH). The present study compares cytotoxic T lymphocyte (CTL) function in the spleens of these GVH mice as well as differences in the donor inoculum that could account for these different types of GVH. We observed that the B6 GVH induces an immunodeficiency that encompasses CTL precursors (and possibly T helper cells) and results in suppressor cells that abrogate responses to both trinitrophenyl (TNP)-modified self and third party alloantigens. In contrast, the DBA GVH induces only a T helper cell immunodeficiency and results in suppressor cells selective for class II restricted L3T4+ T helper cells. Chimeric T cells were detected in both types of GVH. In the B6 GVH both L3T4+ and Lyt-2+ donor cells were observed, although Lyt-2+ cells predominated. In the DBA GVH, donor T cells were almost exclusively of the L3T4+ phenotype. The lack of appreciable donor Lyt-2+ cells in the DBA GVH can be explained by a defect in the DBA donor inoculum manifested by a naturally occurring two-fold reduction in Lyt-2+ cell numbers as well as a nine-fold reduction in CTL precursors with anti-F1 specificity. T cells in the DBA inoculum, therefore, are predominantly L3T4+. A similar defect induced in B6 donor cells by anti-Lyt2 antibody and complement not only converted the suppressive GVH to a stimulatory GVH, as measured by anti-DNA antibodies, but also resulted in a T cell immune deficiency characteristic of the DBA GVH, i.e., a selective loss of the TNP-self CTL response. Thus the presence or absence of adequate numbers of functioning Lyt-2+ cells in the donor inoculum is correlated with the development of either a suppressive or stimulatory GVH, respectively. That donor Lyt-2+ cells mediate a suppressive GVH through cytolytic mechanisms is evidenced by greater than 70% reduction in B6 GVH spleen cell numbers and readily demonstrable anti-F1 CTL activity by these spleen cells despite an inability to generate anti-allogeneic or anti-TNP self CTL activity even in the presence of added T helper factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
By using rabbit antiserum to a glycolipid, ganglio-n-tetraosylceramide (ASGM1), the accessory effect of natural killer (NK) cells on the generation of alloimmune CTL in mice was investigated. When normal C3H/He mice were immunized with C57BL/6 or BALB/c spleen cells, they generated alloimmune CTL with a surface marker phenotype of Thy-1+ Lyt-1-2+ ASGM1-, preceded by early augmentation of cytotoxic activity of NK cells with a Thy-1-Lyt-1-2-ASGM1+ phenotype. Administration of anti-ASGM1 (10 microliters) in mice resulted in a complete depletion of NK activity and ASGM1+ cells in the spleen even 1 day after injection, but no changes in the proportions of T (Thy-1+) cells and their Lyt-1 and Lyt-2 subsets as revealed by an immunofluorescence analyzer (FACS) and phagocytic cells. When these anti-ASGM1-treated mice were immunized with allogeneic cells, they showed neither augmented NK activity nor generation of alloimmune CTL, and spleen cells isolated from these anti-ASGM1-treated mice produced no CTL response to alloimmunization in vitro. Normal spleen cells treated with the antiserum and complement in vitro also showed a complete NK depletion without any deterioration of T cells and their Lyt-1 and Lyt-2 subsets, and when stimulated with allogeneic cells they generated no CTL. Spleen NK (ASGM1+) cells were purified by Percoll-gradient centrifugations followed by complement-dependent killing of T cells with the use of anti-Thy-1 monoclonal antibody, and were further purified by panning methods with anti-ASGM1, giving a preparation consisting of greater than 90% ASGM1+, Ly-5+ cells, and less than 0.5% of Thy-1+, Lyt-1+, and Lyt-2+ cells. These purified ASGM1+ Thy-1- cells alone generated no alloimmune CTL in response to alloantigens, suggesting that ASGM1+ NK cells contained no precursors of alloimmune CTL. When added into NK-depleted spleen cells, they restored the normal alloimmune CTL response of the spleen cells, indicating that ASGM1+ fractions contained cells to provide an accessory function for CTL generation. Lyt-1+ cells purified by panning methods did not restore the CTL response of NK-depleted spleen cells. These results indicate that ASGM1+ NK cells, but not Lyt-1+ helper T cells contaminating ASGM1+ fractions at undetectable levels, are responsible for the accessory function. When these purified ASGM1+ Thy-1- cells were stimulated with allogeneic cells, they produced IL 2 and IFN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Fractionation of normal adult mouse spleen and bone marrow cells (C57BL/Ka) was performed by discontinuous Percoll density gradients. The fractionated low density (1.050-1.060 g/ml) C57BL/Ka spleen cells completely suppressed acute lethal graft vs host disease (GVHD) when coinjected with unfractionated C57BL/Ka spleen cells into sublethally irradiated (400 rad) BALB/c mice. In dose response experiments, as few as 0.5 x 10(6) low density cells from the spleen fractions suppressed acute GVHD induced by 2.5 x 10(6) unfractionated allogeneic spleen cells. Although the low density spleen fractions inhibited acute GVHD, the high density (1.075-1.090 g/ml) spleen fractions induced acute GVHD in sublethally irradiated BALB/c recipients. Fractionation of C57BL/Ka bone marrow cells showed that none of the high or low density fractions or unfractionated cells induced lethal GVHD. When these fractions were tested for their capacity to suppress GVHD by coinjection with C57BL/Ka unfractionated spleen cells, all fractions protected the BALB/c recipients. Unfractionated bone marrow cells showed modest protection. Evaluation of the dose response characteristics of the suppressive activity of the low and middle density (1.060-1.068 g/ml) bone marrow cell fraction showed that reproducible protection could be achieved at a 5:1 ratio of inducing to suppressing cells. The low density fractions of both bone marrow and spleen cells had a marked depletion of typical TCR(+)-alpha beta CD4+ or CD8+ T cells, and a predominant population of TCR(+)-alpha beta CD4- CD8- T cells. Purified populations of the latter cells suppressed GVHD. Recipients given unfractionated C57BL/Ka spleen cells and protected with low-density bone marrow or spleen cells were chimeras.  相似文献   

7.
We studied the effect of eliminating T cells from donor grafts of mice in a system in which bone marrow was transplanted across major histocompatibility barriers. BALB/c bone marrow (added as a source of hematopoietic stem cells) combined with equal volumes of spleen cells (added as a source of GVHD-promoting cells) was pretreated in vitro with monoclonal anti-Lyt-1.2 or Lyt-2.2 plus absorbed rabbit complement before injection into C57BL/6 total-body-irradiated recipients. Functional activity of anti-Lyt monoclonal antibodies was determined in CML assay. Treatment with anti Lyt-1.2 plus C did not have any anti-stem cell activity, as measured by CFU-S assay, and protected recipients from the onset of lethal GVHD. Treatment with Lyt-2.2 plus C also did not reduce CFU-S; however, mice receiving treated marrow did develop GVHD and were all dead by 2 mo, as were untreated control mice. Surviving "anti-Lyt-1.2 + C chimeras" demonstrated a high percentage of donor mononuclear cells in their peripheral blood. Similar results were obtained when C3H/HeN donor BMS was treated with monoclonal anti-Lyt-1.1 plus C and injected into C57BL/6 recipients. These findings show that monoclonal antibodies directed against determinants unrelated to Thy-1 can eliminate T cells in the presence of C and successfully protect transplanted mice from lethal GVHD. They also suggest that these anti-Lyt antibodies may be useful tools in determining subpopulations of T cells that contribute to the development of GVHD.  相似文献   

8.
Alloreactive cytotoxic T lymphocytes (CTL) distinct from virus-specific CTL and activated natural killer (NK) cells were generated during acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6J mice. The alloreactive CTL shared similar antigenic markers (Thy-1.2+, Lyt-2.2+, and asialo GM1-) with the virus-specific CTL that appeared at the same time 7 days postinfection, but had different target specificities. These alloreactive CTL lysed allogeneic but not syngeneic or xenogeneic targets. These were distinct from activated NK cells, which lysed all target cell types, peaked 3 days postinfection, and had a phenotype of asialo GM1+, Thy-1 +/-, Lyt-2.2-. Cold target competition studies indicated that there were several subsets of alloreactive T cells with distinct specificities, and that these alloreactive T cells were not subsets of the virus-specific T cells. Similar types of alloreactive CTL were induced at much lower levels in C3H/St mice. This may indicate that the generation of this "aberrant" T cell activity is under genetic control. Hence, the LCMV infection of C57BL/6J mice induces several cytotoxic effector populations including alloreactive CTL, activated NK cells, and virus-specific CTL. Virus infections therefore have the ability not only to polyclonally stimulate B cells, as previously described, but also to stimulate CTL.  相似文献   

9.
10.
L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe), a dipeptide condensation product of L-leucine methyl ester generated by human monocytes (M phi) or polymorphonuclear leukocytes, eliminates all natural killer cell (NK) function from mixed lymphocyte populations. In the present studies, the specificity of the action of Leu-Leu-OMe was examined. It was found that a variety of tissue culture cells and tumor lines of nonlymphoid origin were completely resistant to any demonstrable Leu-Leu-OMe-mediated toxicity. Furthermore, the erythroleukemia line K562, the T cell line Molt-4, the B cell lines HS-Sultan and Daudi, and EBV-transformed B cell lines were unaffected by concentrations of this compound that completely eliminated NK cells. Similarly, the vast majority of OKT4+ lymphocytes manifested no significant toxicity after Leu-Leu-OMe exposure. Furthermore, they retained the capacity to proliferate normally in response to allogeneic cells as well as the ability to provide help for the generation of immunoglobulin-secreting cells (ISC). However, Leu-Leu-OMe caused partial depletion of OKT8+ cells from mixed populations of lymphocytes. After such exposure, the remaining OKT8+ cells were still capable of proliferating in mixed lymphocyte cultures, but the suppressive effect of these cells on ISC generation was abolished. Furthermore, both precursors and activated effectors of cytotoxic T lymphocyte (CTL) and activated NK-like activity generated in mixed lymphocyte cultures were eliminated by exposure to low concentrations of Leu-Leu-OMe. Indeed, both OKT4+ and OKT8+ CTL were eliminated by Leu-Leu-OMe. In addition, both peripheral blood M phi and U937 cells, a human cell line with many M phi-like characteristics, were sensitive to Leu-Leu-OMe-mediated toxicity, although only at two- to fivefold higher concentrations than those completely eliminating NK cells. These findings indicate that Leu-Leu-OMe has selective toxicity for NK cells, CTL, and M phi without adverse effects on a variety of other lymphoid or nonlymphoid cell types.  相似文献   

11.
Acute and chronic graft-vs-host disease (GVHD) due to non-MHC histocompatibility differences differ histopathologically. Acute GVHD is characterized by the cytotoxic destruction of recipient tissues, whereas chronic GVHD is characterized by increased collagen deposition. In an attempt to determine if acute and chronic GVHD represent two phases of the same pathophysiologic process or two distinct processes, the T lymphocytes from the C57BL/6 (B6) recipients of LP spleen cells (non-H-2 GVHD) have been cloned and compared to clones from immune mice (LP anti-B6). Acute GVHD (G) clones were established on day 10-14 posttransplant and chronic GVHD (CG) clones on day 50 from animals with clinical chronic GVHD. Immune (I) clones were established 10 to 14 days after immunization. All I clones exhibited B6-specific blastogenesis and cytotoxicity and had a Thy-1.2+, Lyt-2.2+, L3T4- phenotype. All CG clones were noncytotoxic, had I-Ab-specific blastogenesis, and had a Thy-1.2+, Lyt-2.2-, L3T4+ phenotype. The acute GVHD (G) clones were heterogeneous. Fourteen of 23 clones exhibited B6-specific blastogenesis and had a Lyt-2.2+, L3T4- phenotype (B6-G clones). Seven of 9 B6-G clones were cytotoxic for B6 targets. Nine of 23 G clones exhibited I-Ab-specific blastogenesis, and all but one clone had a Lyt-2.2-, L3T4+ phenotype as the did CG clones. Thus, the principal clonogenic T lymphocytes from mice with acute and chronic GVHD differ in terms of 1) their antigenic specificity, 2) their cytotoxic capacity, and 3) their surface phenotype. The presence of I-Ab-specific T lymphocytes with a phenotype identical to CG clones early after transplantation suggests that the immunologic events that result in chronic GVHD begin soon after transplantation. These results indicate that acute GVHD is due primarily to recipient-specific cytotoxic donor T lymphocytes, whereas chronic GVHD is due to autoreactive helper T lymphocytes.  相似文献   

12.
The present investigation was initiated to determine the mechanism by which 1,3-bis(2-chloro-ethyl)-1-nitrosourea (BCNU) treatment of tumor-bearing mice results in a high percentage of surviving mice which are resistant to subsequent homologous tumor challenge. Spleen cells from C57BL/6 mice bearing the syngeneic LSA ascites tumor failed to demonstrate significant tumor-specific cytotoxic T lymphocyte (CTL) activity when stimulated in vitro with irradiated tumor cells. This lack of CTL activity correlated with the presence and high activity of two types of CTL-regulatory suppressor T cells (Ts), tumor-specific Thy-1+, Lyt-1-2+ and tumor-nonspecific Thy-1+, Lyt-1+2+ cells, as demonstrated by a double-positive selection technique. In contrast, spleen cells from BCNU-treated tumor-bearing mice generated high tumor-specific CTL activity when stimulated in vitro with irradiated tumor cells. This CTL activity correlated with the lack of demonstrable tumor-specific Ts and greatly diminished tumor-nonspecific Ts activity. The tumor-specific helper activity of Thy-1+, Lyt-1+,2- cells was found to be similar in both BCNU-treated and untreated tumor-bearing mice. BCNU-treated mice that survived a primary LSA tumor challenge (referred to as BCNU-cured mice) resisted subsequent challenge with the homologous (LSA) but not with a heterologous syngeneic tumor (EL-4). However, rejection of a secondary challenge with LSA tumor by BCNU-cured mice was inhibited by adoptive transfer of spleen cells from either normal mice or mice bearing LSA tumors. Furthermore, LSA tumor cells that failed to evoke tumor-specific CTL activity in normal mice could induce high CTL activity in BCNU-cured mice. The present study suggests that, in addition to its direct tumoricidal activity, BCNU inhibits the induction of tumor-specific Ts, thereby explaining why a high percentage of mice survive a primary syngeneic tumor challenge after treatment with BCNU, and also resist subsequent rechallenge with the homologous tumor.  相似文献   

13.
Primary and secondary cytotoxic T lymphocyte responses to minor alloantigens can be suppressed by priming host mice with a high dose (10(8) cells) of alloantigenic donor spleen cells (SC). Such suppression is antigen specific and transferable into secondary hosts with T cells. One interpretation of this is that antigen-specific host suppressor T cells (Ts) are activated. Alternatively, donor Lyt-2+ T cells, introduced in the priming inoculum, may inactivate host CTL precursors (CTLp) that recognize the priming (donor) alloantigens. Donor cells that act in this way are termed veto T cells. The experiments described here exclude veto T cell participation in transferable alloantigen-specific suppression, and demonstrate the operation of an alloantigen-specific host-derived T suppressor (Ts) cell. The origin of the Ts has been studied directly by using Thy-1-disparate BALB/c mice. The cell responsible for the transfer of suppression of a secondary CTL response to B10 minors was of the host Thy-1 allotype, and so originated in the host spleen and was not introduced in the priming inoculum. Secondly, antigen-specific Ts generated in CBA female mice against B10 minors could act on CTL responses to an unequivocally non-cross-reactive-third party antigen (H-Y), provided the two antigens were expressed on the same cell membrane. Such third-party suppression is incompatible with the operation of veto T cells. Depletion of Thy-1.2+ or Lyt-2+ cells from the suppression-inducing donor SC inoculum did not abrogate suppression induction in BALB/c mice; instead, suppression was enhanced. The demonstration of veto cell activity in similarly primed mice by other groups of investigators indicates that both types of suppression may operate. However, our results show that only antigen-specific Ts can mediate the transferable suppression of CTL responses to alloantigens.  相似文献   

14.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

15.
(C57BL/6 x DBA/2)F1 mice transplanted with parental C57BL/6 spleen cells become splenic chimeras, show donor antihost cytotoxic T cell activity, and lose their T cell-mediated, humoral, and natural immunity. Injection of anti-asialo-GM1 (ASGM1) into transplanted mice strongly suppresses splenic cytotoxic activity and causes a significant reduction of spleen cells expressing ASGM1, Thy-1, and Lyt-2. In vitro treatment of spleen cells from transplanted mice with antibody and complement shows that the cytotoxic effector cells are ASGM1+, Thy-1+, Lyt-2+, L3T4-, NK1.1-, and H-2d-, hence of donor origin. The cytotoxic effector cells are specific for H-2d targets and lack NK activity. In an attempt to explore whether in vivo elimination of the cytotoxic effector cells has any influence on splenic chimerism or humoral immunity, F1 mice injected with parental splenocytes were treated with anti-ASGM 1. Results show that this treatment eliminates a substantial proportion of cytotoxic effector cells but has no effect on splenic chimerism or restoration of humoral immunity. It therefore appears that cytotoxic effector cells are not primarily responsible for induction of chimerism or suppression of humoral immunity. In support of this injection of parental spleen cells with the nu/nu mutation induces killer cells in F1 mice but fails to induce splenic chimerism or immunosuppression. In contrast, injection of parental spleen cells with the bg/bg mutation generates both splenic chimerism and suppression of humoral immunity although their ability to generate cytotoxic effector cells in F1 hosts is seriously impaired and comparable to the cytotoxic potential of C57BL/6 nu/nu cells. It is concluded that the ASGM1 + cytotoxic T cells are not primarily responsible for splenic chimerism and suppression of humoral immunity and that the two effects are likely caused by parental cells with a different phenotype and function.  相似文献   

16.
Suppressor T cells arising in mice undergoing a graft-vs-host response.   总被引:14,自引:0,他引:14  
We investigated the ability of mice to generate antibody-forming cells when undergoing a graft-vs-host reaction. (C57BL/6 X DBA/2)F1 mice (BDF1) injected with C57BL/6 spleen cells generated suppressor T cells which inhibit antibody synthesis by BDF1 spleen cells in vitro. These T cells arose from the donor inoculum. They differ from helper T cells in size and they act directly on antigen reactive B cells. The suppressor T cells were specifically directed against components of the H-2 region of the reciprocal parental strain (DBA/2 = H-2d) in the hybrid F1 mouse.  相似文献   

17.
The existence of a helper T cell cooperating with cytolytic T lymphocytes (CTL) in cell-mediated anti-tumor responses specific for the virus-induced FMR antigens can be demonstrated by using unprimed thymocytes as CTL precursors and in vivo primed irradiated spleen cells as helper. The helper T cells express Thy-1.2 and Lyt-1.2 antigens at their surface, but not Lyt-2.2. The helper function required the presence of macrophages to be detected, is antigen specific, and appears unusually radiosensitive compared with previously described helper T cell function.  相似文献   

18.
Non-MHC loci have been shown to play an important role in the development and regulation of graft-vs-host disease (GVHD). In the murine model of GVHD under study, injection of C57BL/6 spleen cells into unirradiated (C57BL/6 x DBA/2)F1 hybrid recipient mice results in an acute form of GVHD characterized by CTL, suppressor cells, and runting. In contrast, injection of DBA/2 spleen cells into the same recipients results in a chronic form of GVHD that is characterized by a lack of CTL and hyperproduction of Ig and autoantibodies. After preliminary studies with the use of congenic mice showed that non-MHC loci were controlling GVHD responses in this model, genetic analysis of GVHD response of BXD recombinant inbred strains and (B10.D2 x DBA/2) X DBA/2 BC mice identified a single locus, Gvh, on chromosome 7 that controls whether acute or chronic GVHD results from injection of parental lymphocytes into unirradiated (C57BL/6 x DBA/2)F1 recipient mice.  相似文献   

19.
C57BL/6 (B6) mice were i.v. presensitized with class I H-2-disparate B6-C-H-2bm1 (bm1) spleen cells. Such presensitization resulted in almost complete abrogation of bm1-specific Lyt-2+ T cell-mediated proliferative and IL-2-producing capacities as measured by MLC of lymphoid cells from presensitized B6 mice with stimulating bm1 cells. In contrast, comparable magnitude of CTL responses was generated in bulk cultures from presensitized B6 lymphoid cells to that obtained in unpresensitized B6 responding cultures. These differential influences of Lyt-2+ T cell functions were also demonstrated by limiting dilution assays; frequencies of proliferative and IL-2-producing T cell precursors were as low as undetectable in presensitized B6 lymphoid cells, whereas an appreciable frequency of CTL precursors in a portion of the same lymphoid cells was observed. When bm1 skin grafting was performed in B6 mice i.v. presensitized with bm1 cells, the strikingly prolonged survival of bm1 skin grafts was observed. It was also demonstrated that the bm1 skin graft-bearing B6 mice which had been presensitized with bm1 cells not only exhibited a continuing suppressive state of bm1-specific helper (proliferative and IL-2-producing) function but also failed to generate anti-bm1 CTL responses. These results indicate that 1) i.v. presensitization with class I H-2 alloantigens results in selective tolerance of Lyt-2+ Th cells which is adequate for inducing prolonged graft survival, 2) the induction of complete abrogation of CTL potential is not absolute requirement for the prolongation of graft survival, and 3) residual CTL potential is attenuated after grafting so far as Th cells are rendered tolerant.  相似文献   

20.
Mouse strains of H-2b haplotype exhibit much weaker cytotoxic T lymphocyte (CTL) responses to haptens reactive with amino groups of cell surface (NH2-reactive haptens) compared with H-2k strains. However, H-2b strains can generate high CTL responses to haptens reactive with sulfhydryl groups of cell surface (SH-reactive haptens). The present study investigates the role of haptenic structure and hapten-cell surface reaction patterns in influencing the generation of the T cell specificity as well as the H-2-linked genetic control. CTL and helper T cell responses were generated against two structurally related haptens, N-iodoacetyl-N'-(5-sulfonic-1-naphthyl) ethylene-diamine (SH-reactive AEDANS; AED-SH) and 5-sulfo-1-naphthoxy acetic acid N-hydroxysuccinimide ester (NH2-reactive form of AEDANS; AED-NH2) by immunizing C57BL/6N (H-2b) mice with these hapten-modified syngeneic spleen cells. Spleen cells from primed C57BL/6N mice generated strong CTL and helper T cell activities upon in vitro restimulation with the respective hapten-modified self. The generation of potent anti-AED-NH2 CTL and helper T cell responses in C57BL/6N mice sharply contrasted with the failure of NH2-reactive haptens studied thus far to generate strong anti-hapten cytotoxic responses in H-2b mice. Antibodies induced against the above two haptens exhibited extensive cross-reactivity detected by hemagglutination, whereas CTL and helper T cells clearly discriminated the structural difference between AED-NH2 and AED-SH haptens. The hapten specificity in T cell recognition was also observed between AED-NH2 and trinitrophenyl (TNP) haptens, which were demonstrated to functionally modify similar cell surface sites. These results indicate that hapten epitope structure and hapten-cell membrane conjugation patterns influence the generation of H-2-linked genetic control and T cell specificity in anti-hapten self cytotoxic as well as helper T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号