首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
After massive hemorrhage, adult sheep with genotypically low potassium (LK) red cells temporarily produce high potassium (HK) cells with ouabain-sensitive K+ pump fluxes equivalent to mature HK red cells. In light of recent reports of different red cell volume populations accompanying the HK-LK transition also occurring in newborn LK sheep and the unresolved controversy over the effect of anti-L on K+ transport in these immature red cells, we have reexamined the K+ transport changes and the effect of anti-L in the newly formed HK cells at various times after anemic stress and under in vitro conditions. We found that approximately 7 d after bleeding, maximum reticulocytosis occurred in the peripheral blood. After separation by density centrifugation, the top 10% cell fraction contained 100% reticulocytes, with a mean cell volume 2.5 times larger than that of mature erythrocytes. These immature red cells were of HK type, and their K+ pump and leak fluxes were 30 and 10 times higher, respectively, than those found in mature LK cells. The new cells may possess HK- and LK- type pumps because K+ pump influx was significantly stimulated by anti- L. When separated by density centrifugation on days 9, 17, and 23 after bleeding, some of the cells apparently maintained their large size while gaining higher density. Large cells from day 9, kept in vitro for 22 h, showed anti-L-sensitive K+ pump and leak fluxes that declined within hours, paralleling the behavior of these cells in vivo, whereas cellular K+ levels changed much less. It is concluded that the newly formed red cells may belong to a stress-induced macrocytic cell population that does not acquire all of the characteristics of adult LK cells.  相似文献   

2.
The present study demonstrated that dog reticulocytes had considerable amounts of (Na,K)-ATPase, but lost it rapidly during maturation into erythrocytes. Furthermore, reticulocytes from dogs possessing erythrocytes characterized with high (Na,K)-ATPase activity and high K, low Na concentrations (HK dogs; Maede, Y., Inaba, M., and Taniguchi, N. (1983) Blood 61,493-499) had more ouabain binding sites than cells from normal dogs (LK dogs). Our results were as follows: i) The maximal binding capacities (Bmax) for ouabain binding at equilibrium were approximately 0 and 1,500 binding sites/cell in LK and HK dog erythrocytes, respectively. ii) Reticulocytes from LK dogs possess approximately 5,700 ouabain binding sites/cell. iii) The Bmax value for ouabain in HK reticulocytes was about 10,000 sites/cell, being 2-fold that in LK reticulocytes. iv) Ouabain-sensitive fluxes of 24Na and 42K in each type of reticulocyte were compatible with the number of ouabain binding sites on the cells. v) Ouabain binding capacity, as well as (Na,K)-ATPase activity, in the reticulocytes from LK dogs fell rapidly to nearly zero during the maturation into erythrocytes. vi) Although reticulocytes from HK dogs also showed a similar regression of (Na,K)-ATPase during maturation, they retained a certain number of ouabain binding sites even after maturation, resulting in the high activity of (Na,K)-ATPase in HK erythrocyte membrane.  相似文献   

3.
The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems.  相似文献   

4.
Binding of highly purified 125I labeled M and L antibodies, both belonging to the immunoglobulin G class, was studied in high potassium (HK) and low potassium (LK) sheep red cells. Anti-M and anti-L bound specifically to M and L antigen positive HK and LK red cells, respectively. Nonspecific binding was higher for anti-L to HK cells than for anti-M to LK cells. Once bound, the M and L antibodies were capable of inducing complement dependent immune hemolysis. Only 75-100 and 500-750 molecules of anti-M and anti-L immunoglobulins were required to hemolyze 50% of HK (MM) and LK (LL) red cells, respectively, suggesting that the M and L antigens may be clustered on the surfaces of these cells. Equilibrium binding studies revealed that the maximum number of M sites is 3-6 x 10(3) in HK (MM) and 1.5-4 x 10(3) in LK (LM) cells, respectively. In comparison, the number of L antigens is slightly lower in LK cells, about 1.2-1.8 x 10(3) in LL and less in LM(LK) red cells. The number of M and L antigens, therefore, is more than an order of magnitude larger than that of the Na+K+ pumps measured previously in these cells by 3H-ouabain binding, thus precluding a quantitative correlation between M and L antigens and the Na+K+ pumps different in the three genetic types of sheep red cells. The binding affinities of both anti-M and anti-L could not be described by a single equilibrium dissociation constant indicating heterogeneous antibody populations and /or variability in the antigenic sets of individual HK or LK cells. The pronounced heterogeneity of antigens and/or antibodies in both the M and L systems was reflected in the antibody association kinetics, which also exhibited a remarkable temperature dependence. The data suggest that the correlation between the M and L antigens and the Na+K+ pump molecules is more complex than that in goat red cells previously reported by others.  相似文献   

5.
During the first three months after birth lambs produce sequentially three erthryocyte populations of different mean volume as demonstrated by electric sizing methods (Valet, Franz, and Lauf, J. Cell. Physiol. 94 (1978) 215). We separated by centrifugal elutriation the small volume population (type II) red cells of a genotypically low K+ (LK) lamb from the population containing the larger volume type I and III cells, an admixture of fetal (I) and adult (III) erythrocytes. The cells were separated at various time intervals after birth and analyzed with respect to their volumes, cation contents, and cation flux properties by means of 86Rb uptake. The effect of anti-L on K+ pump and leak fluxes was ascertained in unseparated and separated red cells. It was found that the small red cells of population II, transiently present for several weeks, were fully developed LK cells with K+ pumps responding characteristically to the stimulatory action of anti-L. In constrast, the larger cells of population I and III were of high K+ (HK) nature at early time points, the K+ pump activities approximately ten times higher than adult LK cells. These cells constitute an admixture of type I fetal HK cells, and type III reticulocytes which are precursors for the final type III adult LK cells, since anti-L had a small stimulatory effect. At later times, however, only adult type III LK cells predominated. The data directly support our earlier finding that the HK-LK transition in genotypically LK lambs is primarily governed by cellular replacement.  相似文献   

6.
Ouabain-resistant (OR), C1- -dependent K+ (K+C1-) transport measured by Rb+ influx in isosmotic and anisosmotic media was stimulated by the Ca2+ ionophore A23187 and EGTA (ethylene-glycol-tetracetic acid) in low K+ (LK) but not in high K+ (HK) sheep red cells. Increasing external Ca2+ concentrations, [Ca2+]o, from about 10(-7) to 10(-3)M in presence of A23187 and in absence of EGTA inhibited OR Rb+ influx, in LK red cells osmotically shrunken or swollen as well as treated with the thiol reagent N-ethylmaleimide (NEM). Hence the volume- and the NEM-stimulated K+C1- transport system in LK cells can be experimentally modulated by cellular Ca2+ or other Me2+, which may interact with sites on the K+C1- transporter under the control of membrane sulfhydryl (SH) groups.  相似文献   

7.
The passive K influx in low K(LK) red blood cells of sheep saturates with increasing external K concentration, indicating that this mode of transport is mediated by membrane-associated sites. The passive K influx, iMLK, is inhibited by external Na. Isoimmune anti-L serum, known to stimulate active K transport in LK sheep red cells, inhibits iMLK about twofold. iMLK is affected by changes in intracellular K concentration, [K]i, in a complex fashion: increasing [K]i from near zero stimulates iMLK, while further increases in [K]i, above 3 mmol/liter cells, inhibit iMLK. The passive K influx is not mediated by K-K exchange diffusion. The effects of anti-L antibody and [K]i on passive cation transport are specific for K: neither factor affects passive Na transport. The common characteristics of passive and active K influx suggest that iMLK is mediated by inactive Na-K pump sites, and that the inability to translocate Na characterizes the inactive pumps. Anti-L antibody stimulates the K pump in reticulocytes of LK sheep. However, anti-L has no effect on iMLK in these cells, apparently because reticulocytes do not have the inactive pump sites which, in mature LK cells, are a consequence of the process of maturation of circulating LK cells. The results also indicate that anti-L alters the maximum velocity of both active and passive K fluxes by converting pumps sites from a form mediating passive K influx to an actively transporting form.  相似文献   

8.
The kinetic characteristics of the Na:K pump in high potassium (HK) and low potassium (LK) goat red cells were investigated after altering the intracellular cation concentrations. At low concentrations of intracellular K (Kc), increasing Kc at first stimulates the active K influx in HK cells, but at higher Kc the pump is inhibited. These results suggest that in HK cells Kc acts both at a stimulatory site at the inner aspect of the pump and by competition with intracellular Na (Nac) at the Na translocation sites. In LK cells, Kc inhibits the active K influx and the sensitivity of LK cells to inhibition is much greater than the sensitivity of HK cells. Exposure of LK cells to an antibody (anti-L), raised in an HK sheep by injection of LK sheep cells, increased the active K influx at any given Kc. The effect of the antibody was greater at higher intracellular K concentrations, and in cells with very low concentrations of K the antibody had little effect on the pump rate. The failure of anti-L to stimulate the pump in low Kc LK cells was not due to failure of the antibody to bind to the cells. Anti-L combining at the outer surface of the cell reduces the affinity of the pump at the inner surface for K at the inhibitory sites. The maximal pump rate in LK cells at optimal Na and K concentrations is less than the maximal pump rate of HK cells under the same circumstances.  相似文献   

9.
A model cell which controls its cation composition and volume by the action of a K-Na exchange pump and leaks for both ions working in parallel is presented. Equations are formulated which describe the behavior of this model in terms of three membrane parameters. From these equations and the steady state concentrations of Na, K, and Cl, values for these parameters in high potassium (HK) and low potassium (LK) sheep red cells are calculated. Kinetic experiments designed to measure the membrane parameters directly in the two types of sheep red cells are also reported. The values of the parameters obtained in these experiments agreed well with those calculated from the steady state concentrations of ions and the theoretical equations. It is concluded that both HK and LK sheep red cells control their cation composition and volume in a manner consistent with the model cell. Both have a cation pump which exchanges one sodium ion from inside the cell with one potassium ion from outside the cell but the pump is working approximately four times faster in the HK cell. The characteristics of the cation leak in the two cell types are also very different since the HK cells are relatively more leaky to sodium as compared with potassium than is the case in the LK cells. Both cell types show appreciable sodium exchange diffusion but this process is more rapid in the LK than in the HK cells.  相似文献   

10.
Three red cell populations have been distinguished in genotypically low potassium (LK) newborn sheep by an improved electrical sizing method and were best approximated by a logarithmic normal distribution. Labeling studies with 51Cr and 59Fe exclude transformation of the three red cell populations into each other. Population I, consisting of large red cells (mean volume 36 μm3), with a comparatively slow electrophoretic mobility is present at birth and disappears within three to four weeks from circulation. These cells possess a high potassium (HK) steady state concentration, a K+ pump influx activity at least 5-fold greater than observed in adult LK red cells, very low amounts of the L antigens generally associated with the LK property, and do not respond to the stimulatory action of the L antibody. The first population is gradually replaced by population II comprising small red cells (mean volume 28 μm3) of intermediate electrophoretic mobility and with a peak production around day 20 after birth. The potassium concentration, [K+]c, in these cells appears to be lower than in the cells of population I but the L antigen content is increased. Formation of population III (mean volume 30 μm3 and comparatively fast electrophoretic mobility) follows closely that of population II and is preceded by a sharp increase in reticulocytosis. The red cells of population III exhibit parameters characteristic for adult LK cells: low [K+]c and K+ pump activity, fully developed L antigen content, and an almost maximal response to the K+ pump stimulating effect of anti-L. In L and M antigen positive LK red cells of newborn sheep, the development of the M antigen parallels that of the L antigen. The data are consistent with the hypothesis that cellular replacement and not maturation is the major factor in controlling the HK-LK transition in newborn sheep.  相似文献   

11.
1. The potassium concentration in red cells of 21 Barbary sheep showed a bimodal distribution, with five animals of LK type (K+ conc. 30-45 mM) and 16 of HK type (K+ conc. 80-95 mM). 2. Evidence is presented that both Lp and Ll antigens are present on LK Barbary sheep red cells. 3. Active K+ transport in LK Barbary sheep red cells was stimulated 3-5 fold by sheep and goat anti-L. 4. Active K+ transport in HK Barbary sheep red cells was higher than in LK red cells. Five out of six HK animals tested showed no stimulation of active K+ transport with anti-L. One HK animal (2BA2) showed some stimulation of active K+ transport, and also absorbed some anti-L from antisera, suggesting that Lp antigen is present on these red cells. 5. Ouabain-sensitive ATPase in membranes from HK and LK Barbary sheep red cells showed kinetics characteristic of HK and LK membranes of domestic goats and sheep; the ATPase of LK Barbary sheep membranes sensitized with anti-L was stimulated 2-fold due to an alteration in the internal sodium and potassium affinities in favour of sodium.  相似文献   

12.
Binding of 3H-ouabain was studied in high potassium (HK) and low potassium (LK) sheep red cells. In particular, we investigated the effect of anti-L, an antibody raised in HK sheep against L-positive LK sheep red cells, on 3H-oubain binding and its relation to K+ -pump flux inhibition in LK cells. HK cells were found to have about twice as many 3H-ouabain binding sites and a higher association rate for 3H-ouabain than homozygous LL-type LK cells. The number of 3H-ouabain molecules bound to heterozygous LM-type LK cells is lower than that on LL cells, but the rate of ouabain binding is between that of HK and LL red cells. A close correlation was observed between the rates of 3H-oubain binding and fraction K+-pump inhibition. Exposure of LM and LL cells to anti-L did not affect the number of 3H-ouabain molecules bound at saturation, but increased the rates of glycoside binding and K+ -pump inhibition proportionately, so that for LK cells in the presence of anti-L, the rates of the two processes approximate those of HK cells. These data exclude the possibility that anti-L generates entirely new pump sites in LK sheep cells, but suggest that the antibody increases the affinity of the existing -a+ -K+ pumps for the glycoside.  相似文献   

13.
Red cells of adult sheep, like those of other ruminants, lack the calcium-activated potassium channel which is present in the membrane of human red cells. Since the activities of other transport systems in the sheep red cell are known to decrease during maturation of the cell or during development of the animal it was investigated whether the K+ channel is present in red cells from younger animals or in reticulocytes. Using the divalent cation ionophore A23187 to increase the intracellular Ca of intact cells, it was found that the K+-selective channel is present in foetal red cells from the foetus or newborn animal but not in reticulocytes. The presence of the channel showed no dependence on the K+ genotype of the sheep and was not associated with either "high K+"- or "low K+"-type Na+ pump. No Ca2+-dependent change in K+ permeability was found in red cells from either newborn or adult donkeys suggesting that its presence in the red cells of the foetus may not be general. The role of the K+ channel in the mammalian red cell and the relationship between the K+ channel and the Na+ pump are discussed.  相似文献   

14.
1. The action of sodium periodate and neuraminidase on active and passive K+ transport in low-potassium type (LK) sheep red cells was investigated in relation to the contribution of the Lp and Ll antigens. 2. Active K+ transport in LK sheep red cells was not affected by treatment with sodium periodate (2 mM), or with neuraminidase. 3. Passive K+ transport in LK sheep red cells was increased by sodium periodate treatment in a concentration-dependent manner. The increase was not Cl- dependent, and so differed from the increased passive K+ uptake resulting from N-ethylmaleimide treatment. 4. HK sheep red cells treated with sodium periodate showed small increases in passive K+ uptake, and N-ethylmaleimide treatment used sequentially with sodium periodate resulted in further small increases in passive K+ uptake. 5. In LK sheep red cells the stimulation of active K+ transport by anti-L was impaired by 50% in cells treated with sodium periodate (2 mM) and was slightly lowered in cells treated with neuraminidase. 6. In LK sheep red cells inhibition of passive K+ transport by anti-L was not impaired by sodium periodate treatment (2 mM), or by neuraminidase treatment.  相似文献   

15.
Interaction of HK and LK Goat Red Blood Cells with Ouabain   总被引:1,自引:0,他引:1       下载免费PDF全文
The characteristics of the interaction of Na-K pumps of high potassium (HK) and low potassium (LK) goat red blood cells with ouabain have been determined. The rate of inhibition by ouabain of the pump of HK cells is greater than the rate of inhibition of the pumps of LK cells. Treatment of LK cells with an antibody (anti-L) raised in HK sheep by injecting LK sheep red cells increases the rate of inhibition of the LK pumps by ouabain to that characteristic of HK pumps; reduction of intracellular K (Kc) in LK cells increases the rate at which ouabain inhibits their pumps and exposure of these low Kc cells to anti-L does not affect the rate of inhibition. There is considerable heterogeneity in the pumps of both HK and LK cells in the rate at which they interact with ouabain or the rate at which they pump or both. LK pumps which are sensitive to stimulation by anti-L bind ouabain less rapidly than the remainder of the LK pumps and exposure to antibody increases the rate at which ouabain binds to the sensitive pumps; the difference between the two types of pumps disappears if intracellular K is very low. The calculated number of ouabain molecules bound at 100% inhibition of the pump is about the same for HK and LK cells. Although exposure to anti-L increases the apparent number of ouabain binding sites in LK cells at normal Kc, it does not alter the apparent number of sites in LK cells when Kc has been reduced.  相似文献   

16.
Cytometric analysis of the volume-distribution of macrocytic reticulocytes from 6-8 days acutely anemic sheep of both high and low potassium erythrocyte type revealed hyposmotically induced cell volume reduction in K-free NaCl but not in Na-methane sulfonate (CH3SO3Na) media. Furthermore N-ethylmaleimide, known to stimulate K:Cl efflux in these cells, and low extracellular pH caused cell shrinkage in isosmotic NaCl but not in CH3SO3Na. These data suggest that cell volume reduction, physiologically occurring during reticulocyte maturation, is a Cl-dependent process most likely involving electro-neutral K:Cl transport known to exist in reticulocytes of both sheep cation genotypes.  相似文献   

17.
Membrane fragments from high potassium (HK) and low potassium (LK) sheep red cells were separated by density gradient centrifugation. Three preparations were studied: (1) HK membranes sonicated for 20 minutes, (2) HK membranes sonicated for 3 minutes, and (3) LK membranes sonicated for 3 minutes. The adenosine triphosphatase (ATPase) activity in the maximally disrupted preparation (1) was not sensitive to Na + K and was recovered in relatively small but heavy (specific gravity 1.19) fragments which made up no more than 8 per cent of the total membrane. Both Na + K-sensitive (S) and Na + K-insensitive (I) ATPase activity were found in the more gently broken up preparations (2) and (3) but the ratio of S- to I-ATPase was much greater in HK than in LK membrane fragments. S-ATPase activity in preparation (2) was about 50 per cent that observed in HK membranes prior to sonication. S-ATPase activity was recovered from the density gradient in relatively large but light (specific gravity 1.10) fragments. As was the case with the maximally disrupted preparation (1), I-ATPase activity in both preparations (2) and (3) was recovered in small but heavy (specific gravity > 1.20) fragments. The possibility that sensitivity of sheep red cell membrane ATPase to Na + K depends on the association between units containing the enzyme(s) and large, light, phospholipid-containing components is discussed.  相似文献   

18.
Lambs of known genotype with respect to the locus determining cation composition of red cells were obtained by selective matings. Numbers of K+ pump sites per cell were determined on HK and LK lambs 10–20 days postnatal by simultaneously determining [3H]ouabain binding and inhibition of active K+ transport. Red cells from HK lambs were indistinguishable from adult HK cells with regard to the K+ pump flux and number of pump sites. Cells from genetically LK lambs had pump fluxes and numbers of pump sites intermediate between those from adult HK and LK sheep. The results suggest that the change in cation composition and in the K+ pump during the first 60 days in genetically LK lambs can be correlated with a reduced number of K+ pump sites.  相似文献   

19.
GENETIC VARIATION IN THE SHEEP RED BLOOD CELL   总被引:2,自引:0,他引:2  
1. There are 7 well-established red-cell antigen (blood group) loci. The R-O system has 3 phenotypes, R, O and i, identified by the ‘naturally occurring’ antibodies, anti-R and anti-O. The R and O substances are also present in soluble form in some body secretions. The expression of R and O is controlled by a dominant gene I, epistatic in effect, at an independent locus from that of R. The systems, A, C, M-L, B, D and X-2 are identified by means of ‘immune-type’ antibodies, and several of the loci have multiple alleles. An isoenzymic form of serum alkaline phosphatase is associated with the R-O system. The frequency for the genes at the various loci has been determined in a limited number of breeds. 2. Some sheep red cells have high K+ and low Na+ concentrations (HK type, or Key), others have low K+ and high Na+ concentrations (LK type or Kea). Two other rare forms exist; Key type which is HK but with lower than normal K+ values, and Kep type which has approximately equal Na+ and K+ concentrations. The red cells of foetuses and newborn lambs have high K+ levels irrespective of their potassium genotype. HK cells have 3–4 times greater (Na+-K+)-activated ATPase activity, a 3–4 times increased rate of active K+ transport and a larger number of ouabain-binding sites than LK cells. Antigen M is present on homozygous HK and heterozygous LK red cells, and antigen L is present on homozygous and heterozygous LK red cells. Sensitization of LK cells with anti-L stimulates active K+ transport and ATPase activity and exposes a larger number of ouabain-binding sites in these cells. Anti-M has no effect. The red cells of newborn lambs only show weak L and M antigen activity. It is postulated that L antigen inhibits cation transport in LK cells by masking the pump sites on the membrane. Immature red cells in LK-type sheep have a high rate of active K+ transport and yet have L antigen present. No satisfactory explanation for this has yet been advanced. There is no conclusive evidence that the potassium types have any significance from the point of view of adaptation or sheep breeding. The potassium-gene frequencies are known for a large number of breeds. 3. Two allelic genes, Hb4 and HbB control 3 haemoglobin phenotypes, A, AB, and B. Foetal haemoglobin (HbF) is present in foetuses and newborn lambs. Sheep with HbA also synthesize small amounts of another haemoglobin (HbC) and under conditions of severe anaemia, synthesis of HbC takes over from that of HbA. No change in HbB is observed in anaemia. A rare haemoglobin (HbD) has been found in 3 Yugoslavian sheep. Hbs A, B, C and F differ in their physicochemical properties; they share the same alpha chains but their non-alpha chains differ in a number of amino acids. HbD differs from HbA in one amino acid in the alpha chain. Certain genetic aspects are discussed. There is some evidence that sheep with HbA are less fertile than those with HbB. The gene frequencies for Hb are known for a large number of breeds. 4. Two isoenzymic forms of carbonic anhydrase are found in red-cell lysates and these are controlled by a pair of allelic autosomal genes, producing 3 phenotypes, CAF, CAFS and CAS. Only a few breeds have been studied but CAF is apparently quite rare. 5. An unidentified protein, designated ‘X’ is present in electrophoretic separations of haemolysates from some sheep. Its presence is dominant to its absence. Polymorphism at this locus is present in all breeds so far studied. 6. A deficiency of reduced glutathione (GSH) in red cells is found in some sheep and is inherited as an autosomal recessive disorder. Sheep with this deficiency have lower red-cell K+ and Naf concentrations than normal and it is suggested that the HK GSH-deficient sheep may be Ked type sheep. This deficiency has so far only been found with certainty in one breed of sheep. 7. In sheep twin chimeras, admixture of red-cell antigens, haemoglobin and ‘X’ protein types has been found. Various aspects of chimerism, which occurs only rarely in sheep, are discussed. 8. The significance of the genetic variation is discussed in the light of the physiology and immunology of the red cell and of the sheep itself.  相似文献   

20.
The effect of cholesterol depletion on potassium tracer fluxes was studied in sheep red cells. Removal by the plasma incubation method (5, 12, 30) of approximately 31 and 34% membrane cholesterol from high-potassium (HK) and low-potassium (LK) sheep red cells, respectively, did not induce significant changes in the steady-state cation composition of these cells nor in their passive (leak) and active (pump) K+ influxes. In cholesterol-depleted LK sheep red cells, there was no impairment nor augmentation of the Lp an tibody stimulated K+ pump flux and L1-antibody-mediated reduction of K+ leak flux indicating that the removed cholesterol does not contribute to the activity of the Lp and L1 antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号