首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.  相似文献   

2.
Novel cloning vectors for Bacillus thuringiensis   总被引:6,自引:0,他引:6  
Seven replication origins from resident plasmids of Bacillus thuringienis subsp. kurstaki HD263 and HD73 were cloned in Escherichia coli. Three of these replication origins, originating from plasmids of 43, 44, and 60 MDa, were used to construct a set of compatible shuttle vectors that exhibit structural and segregational stability in the Cry- strain B. thuringiensis HD73-26. These shuttle vectors, pEG597, pEG853, and pEG854, were designed with rare restriction sites that permit various adaptations, including the construction of small recombinant plasmids lacking antibiotic resistance genes. The cryIA(c) and cryIIA insecticidal crystal protein genes were inserted into these vectors to demonstrate crystal protein production in B. thuringiensis. Introduction of a cloned cryIA(c) gene from strain HD263 into a B. thuringiensis subsp. aizawai strain exhibiting good insecticidal activity against Spodoptera exigua resulted in a recombinant strain with an improved spectrum of insecticidal activity. Shuttle vectors of this sort should be valuable in future genetic studies of B. thuringiensis as well as in the development of B. thuringiensis strains for use as microbial pesticides.  相似文献   

3.
Novel cloning vectors for Bacillus thuringiensis.   总被引:8,自引:3,他引:5       下载免费PDF全文
Seven replication origins from resident plasmids of Bacillus thuringienis subsp. kurstaki HD263 and HD73 were cloned in Escherichia coli. Three of these replication origins, originating from plasmids of 43, 44, and 60 MDa, were used to construct a set of compatible shuttle vectors that exhibit structural and segregational stability in the Cry- strain B. thuringiensis HD73-26. These shuttle vectors, pEG597, pEG853, and pEG854, were designed with rare restriction sites that permit various adaptations, including the construction of small recombinant plasmids lacking antibiotic resistance genes. The cryIA(c) and cryIIA insecticidal crystal protein genes were inserted into these vectors to demonstrate crystal protein production in B. thuringiensis. Introduction of a cloned cryIA(c) gene from strain HD263 into a B. thuringiensis subsp. aizawai strain exhibiting good insecticidal activity against Spodoptera exigua resulted in a recombinant strain with an improved spectrum of insecticidal activity. Shuttle vectors of this sort should be valuable in future genetic studies of B. thuringiensis as well as in the development of B. thuringiensis strains for use as microbial pesticides.  相似文献   

4.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

5.
A 4.0-kb BamHI-HindIII fragment encoding the cryIIA operon from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki was cloned into Escherichia coli. The nucleotide sequence of the 2.2-kb AccI-HindIII fragment containing the NRD-12 cryIIA gene was identical to the HD-1 and HD-263 cryIIA gene sequences. Expression of cryIIA and subsequent purification of CryIIA inclusion bodies resulted in a protein with insecticidal activity against Heliothis virescens, Trichoplusia ni, and Culex quinquefasciatus but not Spodoptera exigua. The 4.0-kb BamII-HindIII fragment encoding the cryIIA operon was inserted into the B. thuringiensis-E. coli shuttle vector pHT3101 (pMAU1). pMAU1 was used to transform an acrystalliferous HD-1 strain of B. thuringiensis subsp. kurstaki and a leaf-colonizing strain of B. cereus (BT-8) by using electroporation. Spore-crystal mixtures from both transformed strains were toxic to H. virescens and T. ni but not Helicoverpa zea or S. exigua.  相似文献   

6.
Two pairs of universal oligonucleotide primers were designed to probe the most conserved regions of all known cryI-type gene sequences so that the amplified PCR fragments of the DNA template from Bacillus thuringiensis strains may contain all possible cryI-type gene sequences. The restriction fragment length polymorphism (RFLP) patterns of the PCR-amplified fragments revealed that 14 distinct cry-type genes have been identified from 20 B. thuringiensis strains. Those cry-type genes included cryIA(a), cryIA(a), cryIA(b), cryIA(b), cryIA(c), cryIB, cryIC, cryIC, cryIC(b), cryID, cryIE, cryIF, cryIF, and cryIII (a dagger at the end of a gene designation indicates a novel cry-type gene determined by restriction mapping or DNA sequences). Among them, the sequences of cryIA(a), cryIA(b), cryIB, cryIC, cryIF, and cryIII were found to be different from the corresponding published cry gene sequences. Interestingly, five cry-type genes [cryIA(a)-, cryIB-, cryIC-, cryIC(b)-, and cryIF-type genes] and seven cry-type genes [cryIA(a)-, cryIA(b)-, cryIB-, cryIC-, cryIC(b)-, cryIF-, and cryIII-type genes] have been detected from B. thuringiensis subsp. morrisoni HD-12 and B. thuringiensis subsp. wuhanensis, respectively. Therefore, the PCR-RFLP typing system is a facile method to detect both known and novel cry genes existing in B. thuringiensis strains.  相似文献   

7.
Sun Y  Wei W  Ding X  Xia L  Yuan Z 《Archives of microbiology》2007,188(4):327-332
The association of 20 kb heterologous DNA fragments with the parasporal crystals from native and recombinant Bacillus thuringiensis strains was analyzed, respectively. The cry2Aa10 gene cloned in plasmid pHC39 was transformed into B. thuringiensis subsp. kurstaki strains CryˉB and HD73, producing recombinant strains CryˉB(pHC39) and HD73(pHC39). SDS-PAGE and scanning electron microscopy analyses demonstrated that the recombinant CryˉB(pHC39) produced cuboidal crystals of Cry2Aa10 protoxin, while recombinant HD73(pHC39) produced both bipyramidal crystals of Cry1Ac1 protoxin and cuboidal crystals of Cry2Aa10 protoxin. Bioassay results proved that recombinant HD73(pHC39) showed higher insecticidal activity to Helicoverpa armigera than CryˉB(pHC39). It was found that 20 kb DNA fragments were present in bipyramidal and cuboidal crystals from both native and recombinant strains, and the 20 kb heterologous DNAs contained chromosome-specific and resident large plasmid-borne DNA fragments, suggesting the 20 kb heterologous DNA fragment embodied in crystals came randomly from the bacterial chromosomal and plasmid genome. This was the first investigation devoted exclusively on the origin of 20 kb DNA fragments in the parasporal crystals of B. thuringiensis. The data provides a basis for further investigation of the origin of 20 kb DNAs in the crystals and the interaction of DNA and protoxins.  相似文献   

8.
Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.  相似文献   

9.
The toxicities to neonate Spodoptera exigua and Trichoplusia ni of lyophilized powders obtained from sporulated liquid cultures (referred to as sporulated cultures) and Escherichia coli-expressed P1 [cryIA(a) cryIA(b) cryIA(c)] protoxins from three-gene strains of NRD-12 and HD-1 of Bacillus thuringiensis subsp. kurstaki were determined by using diet incorporation bioassays. Although sporulated cultures from both strains were more toxic to T. ni than S. exigua, there were no differences in toxicity between NRD-12 and HD-1. Toxicities of the three individual P1 protoxins against S. exigua varied by at least fivefold, with the cryIA(b) protein being the most toxic. These same protoxins varied in toxicity against T. ni by at least 16-fold, with the cryIA(c) protein being the most toxic. However, when tested against either S. exigua or T. ni, there were no differences in toxicity between an NRD-12 P1 protoxin and the corresponding HD-1 P1 protoxin. Comparing the toxicities of individual protoxins with that of sporulated cultures demonstrates that no individual protoxin was as toxic to S. exigua as the sporulated cultures. However, this same comparison against T. ni shows that both the cryIA(b) and cryIA(c) proteins are at least as toxic as the sporulated cultures. Results from this study suggest that NRD-12 is not more toxic to S. exigua than HD-1, that different protein types have variable host activity, and that other B. thuringiensis components are not required for T. ni toxicity but that other components such as spores might be required for S. exigua toxicity.  相似文献   

10.
The toxicities to neonate Spodoptera exigua and Trichoplusia ni of lyophilized powders obtained from sporulated liquid cultures (referred to as sporulated cultures) and Escherichia coli-expressed P1 [cryIA(a) cryIA(b) cryIA(c)] protoxins from three-gene strains of NRD-12 and HD-1 of Bacillus thuringiensis subsp. kurstaki were determined by using diet incorporation bioassays. Although sporulated cultures from both strains were more toxic to T. ni than S. exigua, there were no differences in toxicity between NRD-12 and HD-1. Toxicities of the three individual P1 protoxins against S. exigua varied by at least fivefold, with the cryIA(b) protein being the most toxic. These same protoxins varied in toxicity against T. ni by at least 16-fold, with the cryIA(c) protein being the most toxic. However, when tested against either S. exigua or T. ni, there were no differences in toxicity between an NRD-12 P1 protoxin and the corresponding HD-1 P1 protoxin. Comparing the toxicities of individual protoxins with that of sporulated cultures demonstrates that no individual protoxin was as toxic to S. exigua as the sporulated cultures. However, this same comparison against T. ni shows that both the cryIA(b) and cryIA(c) proteins are at least as toxic as the sporulated cultures. Results from this study suggest that NRD-12 is not more toxic to S. exigua than HD-1, that different protein types have variable host activity, and that other B. thuringiensis components are not required for T. ni toxicity but that other components such as spores might be required for S. exigua toxicity.  相似文献   

11.
M Geiser  S Schweitzer  C Grimm 《Gene》1986,48(1):109-118
One of the genes for the entomophatogenic crystal protein of Bacillus thuringiensis (subsp. kurstaki strain HD1) has been cloned in Escherichia coli, and its nucleotide sequence determined completely. The gene is contained within a 4360-bp-long HpaI-PstI DNA restriction fragment and codes for a polypeptide of 1,155 amino acid residues. The protoxin protein has a predicted Mr of 130,625. The E. coli-derived protoxin gene product is biologically active against Heliothis virescens larvae in a biotest assay. Extensive computer comparisons with other published B. thuringiensis subsp. kurstaki strains HD1, HD73, and B. thuringiensis subsp. sotto gene sequences reveal hypervariable regions in the first half of the protoxin coding sequence. These regions are responsible for the biological activity of the protein product of the cloned gene, and may explain the different biological activities of these different protoxins.  相似文献   

12.
Transfer of chromosomal genes and plasmids in Bacillus thuringiensis   总被引:1,自引:0,他引:1  
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

13.
AIM: The study seeks to shed light on the aminopolyol, broad-spectrum antibiotic zwittermicin A gene cluster of Bacillus thuringiensis subsp. kurstaki HD1 and to identify any new uncharacterized genes with an eventual goal to establish a better understanding of the resistance gene cluster. METHODS AND RESULTS: We screened 51 serovars of B. thuringiensis by PCR and identified 12 zmaR-positive strains. The zmaR-positive B. thuringiensis subsp. kurstaki HD1 strain displayed inhibition zones against indicator fungal strain Phytophthora meadii and bacterial strain Erwinia herbicola as well as against Rhizopus sp., Xanthomonas campestris and B. thuringiensis subsp. finitimus. The zmaR gene cluster of strain HD1 was partially cloned using a lambda library and was extensively characterized based on the information available from a study performed on a similar group of genes in Bacillus cereus. CONCLUSIONS: Three of the five genes in the zwittermicin gene cluster, including the zmaR gene, had counterparts in B. cereus, and the other two were new members of the B. thuringiensis zmaR gene cluster. SIGNIFICANCE AND IMPACT OF THE STUDY: The two new genes were extensively analysed and the data is presented. Understanding antifungal activity of B. thuringiensis may help us to design suitable Cry toxin delivery agents with antifungal activity as well as enhanced insecticidal activity.  相似文献   

14.
A low frequency of chromosomal gene transfer from Bacillus thuringiensis to Bacillus cereus was detected by cell mating, with a tryptophan marker being the most frequently transferred gene among four that were tested. The process was resistant to DNase and was not mediated by cell filtrates. Among several B. thuringiensis subspecies tested, transfer was best with a derivative of B. thuringiensis subsp. kurstaki HD1, which lost several plasmids. All of the B. cereus recombinants contained at least one plasmid from the donor B. thuringiensis; frequently, it was a plasmid that encoded a protoxin gene. In matings with B. thuringiensis subsp. kurstaki HD1, a 29-megadalton plasmid that contained a ca. 2.5-kilobase region of homology with the chromosome was always transferred. No detectable transfer of chromosomal genes was found in B. thuringiensis subsp. kurstaki HD1 strains lacking this plasmid, suggesting that there may be chromosome mobilization.  相似文献   

15.
Two sets of inverted repeat DNA sequences, IR2150 and IR1750, were discovered flanking the crystal protein gene on the 75-kilobase plasmid of Bacillus thuringiensis subsp. kurstaki HD73. A restriction map of ca. 40 kilobases around the crystal protein gene was constructed, and the positions of the copies of IR2150 and IR1750 were determined. Three copies of IR2150 were found flanking the crystal protein gene in an inverted orientation, and one partial and three intact copies of IR1750 were found in both inverted and direct orientations around the gene. Hybridization experiments with fragments from within IR2150 and IR1750 demonstrated the presence of multiple copies of these sequences on the chromosome of B. thuringiensis subsp. kurstaki HD73 and also revealed a strong correlation between the presence of these sequences and the presence of the crystal protein gene on plasmids from 14 strains of B. thuringiensis.  相似文献   

16.
A TnpI-mediated site-specific recombination system to construct genetically modified Bacillus thuringiensis strains was developed. Recombinant B. thuringiensis strains from which antibiotic resistance genes can be selectively eliminated were obtained in vivo with a new vector based on the specific resolution site of transposon Tn4430. For example, a cryIC gene, whose product is active against Spodoptera littoralis, was introduced into B. thuringiensis Kto harboring a cryIA(c) gene active against Ostrinia nubilalis. The resulting strain had a broader activity spectrum than that of the parental strain. It contained only B. thuringiensis DNA and was free of antibiotic resistance genes. This should facilitate regulatory approval for its development as a commercial biopesticide.  相似文献   

17.
A protein with a molecular mass of 66 kDa was isolated by a simple, rapid, and inexpensive method, using 3-N-morpholinopropanesulfonic acid, potassium thiocyanate, and dithiothreitol, from a mixture of spores, parasporal crystals, and cell debris of Bacillus thuringiensis subsp. kurstaki. The protein was active against the third instar larvae of Trichoplusia ni, was soluble in 19 mM Na2CO3, and was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed as the insecticidal component of the 132-kDa protoxin of B. thuringiensis subsp. kurstaki by an enzyme-linked immunosorbent assay using antibodies prepared against the protoxin.  相似文献   

18.
A cryIC gene, whose product is active against Spodoptera exigua, was introduced into wildtype Bacillus thuringiensis kurstaki strain YBT1520 using an integrative and thermosensitive vector, pBMB-FLCE, which was developed based on B. thuringiensis transposon Tn4430 harboring a tnpI-tnpA gene. With the mediation of TnpI-TnpA, the cry1C gene was integrated into the chromosome of the host strain. To prevent secondary integration, the integrative vector was eliminated by moving recombinant cultures to 46 degrees C for generations. Two integrative recombinant B. thuringiensis strains BMB1520-E and BMB1520-F were obtained. In recombinant BMB1520-F, the cry1C gene was expressed stably at a significant level and did not reduce the expression of endogenous crystal protein genes. Bioassay results indicated that BMB1520-E and BMB1520-F showed a higher level of activity against S. exigua third-instar larvae than did their parent strains, in addition to the high toxicity to Plutella xylostella third-instar later larvae.  相似文献   

19.
In sporulating cultures of Bacillus thuringiensis subsp. yunnanensis HD977, two cell types are observed: cells forming only spores and cells forming only crystals. Curing analysis suggested that the crystal proteins are plasmid encoded. Through plasmid transfer experiments, it was established that a 103-MDa plasmid is involved in the crystal production. Conjugal transfer of this plasmid to Cry- recipient cells of Bacillus thuringiensis subsp. kurstaki HD73-26 conferred the ability to produce crystals exclusively on asporogenous cells of the recipient, indicating that the 103-MDa plasmid mediates the unique regulation of Cry protein production. When the dipteran-specific cryIVB gene was introduced into wild-type (Cry+) and Cry- backgrounds of B. thuringiensis subsp. yunnanensis by phage CP51ts45-mediated transduction, similar to all other B. thuringiensis strains, irregular crystals of CryIVB protein were produced by spore-forming cells in both backgrounds. However, the synthesis of the bipyramidal inclusions of B. thuringiensis subsp. yunnanensis was still limited only to asporogenous cells of the transductant. Thus, it appears that the unique property of exclusive crystal formation in asporogenous cells of B. thuringiensis subsp. yunnanensis is associated with the crystal protein gene(s) per se or its cis acting elements. As the crystals in B. thuringiensis subsp. yunnanensis were formed only in asporogenous cells, attempts were made to find out whether crystal formation had any inhibitory effect on sporulation. It was observed that both Cry+ and Cry- strains of B. thuringiensis subsp. yunnanensis (HD977 and HD977-1, respectively) exhibited comparable sporulation efficiencies. In addition, the Cry- B. thuringiensis subsp. kurstaki host (HD73-26) and its Cry+ transconjugant (HD73-26-16), expressing the B. thuringiensis subsp. yunnanensis crystal protein, were also comparable in their sporulation efficiencies, indicating that production of the crystal proteins of B. thuringiensis subsp. yunnanensis does not affect the process of sporulation.  相似文献   

20.
Abstract Protoplast fusion between a Gram-negative strain Pseudomonas fluorescens having plant growth promoting activities and a Gram-positive Bacillus thuringiensis var. kurstaki HD 73 possessing insecticidal activity, was carried out to generate P. fluorescens hybrids possessing insecticidal activity. The antibiotic resistance markers of P. fluorescens (rifr, nalr) and the immunoreactivity to the antiserum raised against the crystal proteins of B. thuringiensis var. galleriae were used as selection markers for the hybrids. The hybrids exhibited lethal but differential activity in Heliothis armigera and in Spodoptera litura when compared to the parenthal B. thuringiensis strain. The anti-feedant activity which is characteristic of B. thuringiensis toxin was not observed in the hybrids. Although the presence of sequences homologous to the cloned insecticidal gene of B. thuringiensis was demonstrated, the Western blot analysis of cell extract of the hybrid (PK 105) showed that only low molecular mass crystal proteins (less than 40 kDa) could be detected under denaturing conditions. It indicates that the high molecular mass toxin peptide may be degraded by proteolysis. Besides this, a clear separation of lethal and anti-feedant activity of the B. thuringiensis toxin has been observed by this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号