首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropologists have often used mandibular torsional properties to make inferences about primate dietary adaptations. Most of the methods employed are based on assumptions related to periodontal and alveolar properties. This study uses the finite element method to evaluate some of these assumptions with a cross-section through the third molar of a gorilla. Results indicate that the properties of alveolar bone play an important role in determining the strain field. In comparison, the exact stiffness values of the periodontal ligaments seem to have a much smaller impact. Replacing the dental roots and periodontal ligaments with alveolar bone, however, has a significant influence on the strain field. It underestimates the maximum shear strain by about 28% along its periosteal aspect when alveoli are modeled as cortical bone. It overestimates the strain by a smaller amount when alveoli are modeled as trabecular bone.This study supports the assumption that primate mandibles behave like a closed-section under torsion under the limiting condition that the alveolar bone stiffness is more than half of the value of cortical bone; alveolar bone can then be modeled as cortical bone with a minimal loss of accuracy. In addition, this study suggests that the minimum cortical thickness should be considered for torsional strength. Finally, modeling accuracy can be significantly increased if both dental and periodontal structures can be realistically incorporated into mandibular biomechanical models. However, this may not be always feasible in studies of fossil mandibles. This is due mainly to the difficulties involved in estimating alveolar bone densities and in distinguishing boundaries between cortical bone, alveolar bone, periodontal ligaments, and dental roots in fossil specimens.  相似文献   

2.
Local variation in cortical bone thickness in the postcanine mandibular corpus appears to be stereotypical among anthropoids. Specifically, at sections under the molars, lingually situated cortical bone is typically thinner than that along the lateral aspect. This pattern applies despite phylogenetic, dietary, and allometric differences among the anthropoids sampled to date. Demes et al. (Food Acquisition and Processing in Primates [1984] New York: Plenum Press, p. 369-390) employed a theoretical analysis of mastication in Gorilla and Homo to argue that this pattern could be explained with reference to biomechanical stresses. Specifically, they proposed that the combined effects of torsion and direct shear on the working-side corpus create a condition in which net stresses and strains are reduced along the lingual cortical plate. Demonstration of this effect would suggest a functional linkage between localized differences in bone mass and strain gradients in the facial skeleton. We conducted an empirical evaluation of the effects of the combined loads of torsion and direct shear in vitro on a sample of formalin-fixed human mandibles. Rosette strain gages were affixed to the lateral and medial aspects of the corpus in each specimen, and surface strains were recorded separately under controlled torsional and occlusal loads, and under simultaneous application of these loads. The hypothesis that lingual strains are reduced under combined twisting and occlusal loads was generally supported; however, we observed reduction in surface strains at some sites along the lateral aspect of the corpus under these combined loads as well. These unexpected findings are attributable to unanticipated loading conditions imposed by occlusal forces, which result from sources of stress in addition to direct shear. These experiments provide provisional support for the hypothesis that superposed sources of bone strain produce large strain gradients between buccal and lingual aspects of the mandibular corpus, and that local variation in bone mass may be associated with these gradients.  相似文献   

3.
Alveolar bone supports teeth during chewing through a ligamentous interface with tooth roots. Although tooth loads are presumed to direct the development and adaptation of these tissues, strain distribution in the alveolar bone at different stages of tooth eruption and periodontal development is unknown. This study investigates the biomechanical effects of tooth loading on developing alveolar bone as a tooth erupts into occlusion. Mandibular segments from miniature pigs, Sus scrofa, containing M1 either erupting or in functional occlusion, were loaded in compression. Simultaneous recordings were made from rosette strain gages affixed to the lingual alveolar bone and the M2 crypt. Overall, specimens with erupting M1s were more deformable than specimens with occluding M1s (mean stiffness of 246 vs. 944 MPa, respectively, p=0.004). The major difference in alveolar strain between the two stages was in orientation. The vertically applied compressive loads were more directly reflected in the alveolar bone strains of erupting M1s, than those of occluding M1s, presumably because of the mediation of a more mature periodontal ligament (PDL) in the latter. The PDL interface between occluding teeth and alveolar bone is likely to stiffen the system, allowing transmission of occlusal loads. Alveolar strains may provide a stimulus for bone growth in the alveolar process and crest.  相似文献   

4.
One strategy evolved by teeth to avoid irreversible damage is to move and deform under the loads incurred during mastication. A key component in this regard is the periodontal ligament (PDL). The role of the bone underlying the PDL is less well defined. We study the interplay between the PDL and the underlying alveolar bone when loaded in the minipig. Using an Instron loading device we confirmed that the force-displacement curves of the molars and premolars of relatively fresh minipig intact mandibles are similar to those obtained for humans and other animals. We then used this information to obtain 3D images of the teeth before and after loading the tooth in a microCT such that the load applied is in the third linear part of the force displacement curve. We observed that at many locations there is a complimentary topography of the cementum and alveolar bone surface, strongly suggesting an active interplay between the tooth and the bone during mastication. We also observed that the loaded tooth does not come into direct contact with the underlying bone surface. A highly compressed layer of PDL is present between the tooth and the bone. The structure of the bone in the upper furcation region has a unique appearance with little obvious microstructure, abundant pores that have a large size range and at many locations the bone at the PDL interface has a needle-like shape. We conclude that there is a close interaction between the tooth, the PDL and the underlying alveolar bone during mastication. The highly compressed PDL layer that separates the tooth from the bone may fulfill a key shock absorbing function.  相似文献   

5.
Casual observations have revealed that the anterior dentition of impala and other antelope is loosely embedded, with the tips of the teeth movable over a distance of 1middot;5 to 2mm. The comb-like anterior dentition of impala Aepyceros melampus is utilized extensively for grooming purposes, and it was hypothesized that the looseness of the teeth might be related to the grooming function. A sample of 12 impala mandibles was obtained from Pilanesberg National Park. Boputhatswana. Six of the incisor canine (IC) complexes were examined macroscopically, radiographically and histologically, while the remaining six were used to determine the alveolar depth relative to total root length, The findings were: (1) wide periodontal ligament spaces, most prominent in the apical region; (2) a loose, highly vascular periodontal ligament; (3) well-developed trans-septal periodontal ligament fibres; and (4) relatively shallow alveoli, with only approximately two-thirds of the roots included within the alveoli. In no case could looseness be ascribed to pathological changes in the periodontal ligament, cementum or alveolar bone. These features suggest that the looseness of the teeth is associated with a see-saw action of the teeth about a fulcrum below the alveolar bone crest. with the maintenance of the closed resting position of the teeth being facilitated by the well-developed trans-septal fibres. It is suggested that the minimal interdental space maintained by this arrangement during grooming assists in the efficient removal of parasites from the pelage by impala.  相似文献   

6.
In comparative studies of masticatory function and mandibular biomechanics, the mediolateral dimension of the postcanine corpus (corpus breadth) is commonly utilized as a measure of torsional stiffness from which relative torsional strength is inferred. The use of this dimension entails certain assumptions about corpus shape and cortical bone distribution that are invalid. When corpus breadth is related to an appropriate, empirically supported measure of torsional strength, it is revealed that this dimension has limited utility for inference of biomechanical competence under torsion. The use of linear dimensions to infer structural adaptations to specific loading regimes is problematic given that bone tissue is not optimally deployed to minimize strain levels arising from isolated loads. For the inference of the masticatory biomechanical environment, the more reasonable approach is to consider overall size of the corpus (i.e., cross-sectional area) for inference of intra- and inter-specific differences in masticatory forces.  相似文献   

7.
Finite element models were used to predict the structural consequences of transcortical holes through long bones loaded in torsion. Several parameters were investigated including hole size, anelastic behavior of the bone, cortical wall thickness, cortical wall symmetry, curvature along the bone's long axis and the axial length of the defect. Finite element model predictions of percent intact bone strength were compared to experimental data for sheep femora with transcortical drill holes loaded to failure in torsion. Hole size was expressed as hole diameter divided by the outer bone diameter. Linear finite element model predictions were in conservative agreement with the experimental data for large hole sizes. A transcortical hole with a diameter 50% of the outer bone diameter reduced the torsional strength by 60%. However, the linear models predict a 40% drop in strength for small holes whereas in vitro data suggest that small holes have no significant effect on strength. Models which represent non-linear anelastic behavior in bone over-predicted torsional strengths. Asymmetric cortical wall thickness and long bone bowing have minor effects, while the length of an elongated defect strongly influences the torsional strength. Strength reductions are greatest for bones with thin cortical walls.  相似文献   

8.
Alveolar bone has several mechanical functions, including tooth support and accommodation of occlusal and other masticatory forces. Its unique functional-mechanical environment is reflected by its structural characteristics, but whether alveolar bone is materially distinct from bone elsewhere in the primate facial skeleton is uncertain. This uncertainty is attributable not only to a limited amount of data but also to conflicting findings among these data. We evaluated elastic modulus variation in the mandibular corpus of eight adult specimens of the monkeys Procolobus badius and Colobus polykomos via microindentation to evaluate whether alveolar bone is more compliant than basal bone and to quantify patterns of variation between sexes and species. We sampled Vickers hardness from six serial transverse sections and one coronal section from both the alveolar process and the basal corpus. Hardness values were converted to elastic modulus via regressions specific for bone tissue. Analysis of variance reveals that a plurality of variation is found on a regional scale; i.e., alveolar bone is more compliant than adjacent basal bone. Species affiliation and sex are not significant sources of variation. These findings support a hypothesis that compliance of alveolar bone represents a material solution for avoiding large stress concentrations arising from occlusal loads. Other comparative data suggest important differences between colobine and cercopithecine mandibles in terms of bone stiffness, both overall and in terms of relative stiffness of alveolar and basal cortical bone.  相似文献   

9.
Radiographs were taken of the jaws of skeletal remains of two populations of different-phenotype Prehistoric Australians from Roonka and Early New Zealanders (Maoris). On these radiographs crown, root, and corpus size were measured. Corpus height was subdivided into alveolar bone height, defined as the bone superior to the mandibular canal, and basal bone height, defined as that inferior to the mandibular canal. Both between and within the two populations there was a significant and negative correlation between crown size and corpus height. The differences between the two populations in corpus height were associated with differences in alveolar bone height rather than basal bone height and support hypotheses associating continued eruption of adult teeth with growth of the alveolar bone. The findings also support previous studies that have shown only a low correlation between crown size, root size, and corpus height.  相似文献   

10.
The influence of hard-object feeding on the size and shape of the mandibular corpus was investigated through a comparative biomechanical analysis of the jaws of adult femaleCebus apella andCebus capucinus. Computed tomography (CT) was used to discern the amount and distribution of cortical bone at M2 and symphyseal cross sections. From these data, the biomechanical properties of the mandibular corpus were determined to assess the structural rigidity of the jaw with respect to the bending, torsional, and shear stresses that occur during mastication and incision. The mandibles ofC. apella are demonstrably more robust than those ofC. capucinus in terms of biomechanical rigidity; differences in corporeal size rather than shape largely account for the enhanced robusticity in the sample ofC. apella. The differences that separate the two taxa probably represent a structural response to the mechanical demands of durophagy inC. apella. These observations suggest that specialization on a diet of hard objects may be expected to result in an overall hypertrophy of bony contours throughout the mandibular corpus.  相似文献   

11.
Finite element modelling of the function of the periodontium and surrounding alveolar bone suggests these tissues are subjected to unusually large strains in comparison with the bone of the basal mandibular corpus. These studies, in addition to certain experimental investigations, have led to the suggestion that the strains experienced in the basal mandibular corpus are not functionally important. Under this view, size and shape of the basal corpus are not functionally linked to masticatory forces. Since previous comparative investigations have been premised on the assumption that masticatory strains in the basal corpus are functionally important, the assertion that masticatory stresses are concentrated primarily in the alveolar process undermines the credibility of this body of work. The hypothesis that the biomechanical effects of masticatory forces are localized in the alveolar process can be evaluated by reference to a number of bone strain investigations, as well as through consideration of current understanding of bone biology and behavior. Experimental studies indicate that the effects of occlusal forces during mastication are quite apparent in alveolar bone, although relatively large strains are also observed in regions well-removed from a loaded alveolus. It is also apparent that both alveolar and basal mandibular bone are subject to bending and twisting strains associated not only with occlusal forces, but also with muscular and condylar reaction forces. The result is that strain levels in alveolarvs.basal bone may be roughly similar, in contradiction to some published theoretical models. Based on empirical evidence and theoretical considerations, it is premature to conclude that mandibular corpus size and shape are not functionally linked to the biomechanics of chewing and biting.  相似文献   

12.
Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction.  相似文献   

13.
Facet joints provide rigidity to the lumbar motion segment and thus protect the disk, particularly against torsional injury. A surgical procedure that fully or partially removes the facet joints (facetectomy) will decrease the mechanical stiffness of the motion segment, and potentially place the disk at risk of injury. Analytical models can be used to understand the effect of facet joints on motion segment stability. Using a facet joint model that represents the contact area as contact between two surfaces rather than as point contact, it was concluded that a substantial sudden change in rotational motion, due to applied torsion moment, was observed after 75 percent of any one of the facet joints was removed. Applied torsional moment loading produced coupled extension motion in the intact motion segment. This coupled motion also experienced a large change following complete unilateral facetectomy. Clinically, the present study showed that surgical intervention in the form of unilateral or bilateral total facetectomy might require fusion to reduce the primary torsion motion.  相似文献   

14.
Compact bone distribution and biomechanics of early hominid mandibles.   总被引:1,自引:0,他引:1  
This investigation explores the effects of compact bone distribution on the biomechanical properties of the postcanine mandibular corpus of the fossil hominid taxa Australopithecus africanus and Paranthropus robustus. The mandibles of extant great apes, modern humans, and the fossil hominids are examined by computed tomography (CT), and compact bone contours are used to calculate cross-sectional biomechanical properties (cortical area, second moments of area, and Bredt's formula for torsional strength). The relative amount of compact bone is comparable in the modern and fossil mandibles, but the mechanical properties of A. africanus and P. robustus jaws are distinct in terms of the ratio of minimum to maximum second moments of area. This difference most likely represents a structural response to elevated torsional moments in the fossil hominids. Although the relative amount of compact bone in cross-section does not differ significantly between taxa by statistical criteria, A. africanus utilizes less cortical bone than P. robustus in the same manner in which Pongo is separated from the condition in other extant large-bodied hominoids. It has been suggested that the phenomenon of mandibular "robusticity" (expressed as an index of corpus breadth/corpus height) may be an effect of postcanine megadontia and/or reduced canine size in the australopithecines. Results presented here, however, indicate that it is unlikely that either factor adequately accounts for mandibular size and shape variation in early hominids.  相似文献   

15.
Excavations in later Middle Pleistocene levels at the Bau de l'Aubesier, Vaucluse, France yielded a maxillary molar (M(1) or M(2); Aubesier 10) and a partial mandible from the left C(1) alveolus to the right condylar base lacking the coronoid process (Aubesier 11). Dentally they are similar to other later Middle Pleistocene Europeans in dental dimensions and variable taurodontism (Aubesier 10 but not Aubesier 11). The small Aubesier 11 mandible exhibits a retreating symphyseal profile with a minimal tuber symphyseos, an anterior marginal tubercle at P(4)/M(1), the mental foramen at P(4)/M(1)-M(1), a modest retromolar space, no lingular bridging of the mandibular foramen, an enlarged superior medial pterygoid tubercle, a modest lateral condylar tubercle, and a mandibular notch crest that intersects the middle third of the condylar margin. All of these features fall within the ranges of variation of later Middle Pleistocene Neandertal lineage humans, and some are characteristic of Middle Pleistocene human mandibles in general. In addition, Aubesier 11 exhibits pervasive ante mortem alveolar resorption with apical abscesses, alveolar bone destruction, universal labial/buccal bone loss, ante mortem tooth loss (for > or =81.8% of preserved alveoli), a lingual alveolar fenestration, and two broken root apices with masticatory attrition. These lesions indicate significantly impaired masticatory function, the oldest specimen currently known with such a reduced degree of dental function but one of several Middle Pleistocene human remains with indications of serious abnormalities.  相似文献   

16.
The buccal and lingual roots of 1077 teeth from 100 mandibles of South African Negroes were examined for the presence of dehiscences and fenestrae. All specimens were obtained from cadavers of known sex, tribe, and stated age; 10.5% of teeth were affected. Canines and first premolars were the most common teeth associated with dehiscences and fenestrae. Dehiscences occurred more commonly than fenestrae (1:0.49). The defects were found exclusively in the buccal plate of the alveolar process.  相似文献   

17.
Quantitative assessment of bone fracture healing remains a significant challenge in orthopaedic trauma research. Accordingly, we developed a new technique for assessing bone healing using virtual mechano-structural analysis of computed tomography (CT) scans. CT scans from 19 fractured human tibiae at 12 weeks after surgery were segmented and prepared for finite element analysis (FEA). Boundary conditions were applied to the models to simulate a torsion test that is commonly used to access the structural integrity of long bones in animal models of fracture healing. The output of each model was the virtual torsional rigidity (VTR) of the healing zone, normalized to the torsional rigidity of each patient’s virtually reconstructed tibia. This provided a structural measure to track the percentage of healing each patient had undergone. Callus morphometric measurements were also collected from the CT scans. Results showed that at 12 weeks post-op, more than 75% of patients achieved a normalized VTR (torsional rigidity relative to uninjured bone) of 85% or above. The predicted intact torsional rigidities compared well with published cadaveric data. Across all patients, callus volume and density were weakly and non-significantly correlated with normalized VTR and time to clinical union. Conversely, normalized VTR was significantly correlated with time to union (R2 = 0.383, p = 0.005). This suggests that fracture scoring methods based on the visual appearance of callus may not accurately predict mechanical integrity. The image-based structural analysis presented here may be a useful technique for assessment of bone healing in orthopaedic trauma research.  相似文献   

18.
During orthodontic tooth movement, the application of adequate orthodontic forces allows teeth to be moved through the alveolar bone. These forces are transmitted through the periodontal ligaments (PDL) to the supporting alveolar bone and lead to deposition or resorption of bone, depending on whether the tissues are exposed to a tensile or compressive mechanical strain. Fibroblasts within the PDL (PDLF) are considered to be mechanoresponsive. The transduction mechanisms from mechanical loading of the PDLF to the initiation of bone remodeling are not clearly understood. Recently, members of the ephrin/Eph family have been shown to be involved in the regulation of bone homeostasis. For the first time, we demonstrate that PDLF exposed to tensile strain induce the expression of ephrin-B2 via a FAK-, Ras-, ERK1/2-, and SP1-dependent pathway. Osteoblasts of the alveolar bone stimulated with ephrin-B2 increased their osteoblastogenic gene expression and showed functional signs of osteoblastic differentiation. In a physiological setting, ephrin-B2-EphB4 signaling between PDLF and osteoblasts of the alveolar bone might contribute to osteogenesis at tension sites during orthodontic tooth movement.  相似文献   

19.
The extent to which the mandibular corpus exhibits developmental plasticity has important implications for interpreting variation in adult and juvenile mandibular morphology in the archaeological and paleontological record. Here, we examine ontogenetic changes in mandibular corpus breadth, rigidity, and strength in two population samples with contrasting diets: late prehistoric Tigara from Point Hope, Alaska, characterized by a very demanding masticatory regime, and proto-historic Arikara from the Sully Site in South Dakota, with a less demanding regime. A total of 52 juvenile and 11 adult Tigara, and 32 juvenile and 10 adult Arikara were included in the study. Juveniles ranged in age from 1 to 17 years, with good representation of younger (1-6-year-old) juveniles (20 Arikara, 18 Tigara). Superoinferior and buccolingual external and cortical bone breadths of mandibles were measured at the Pm(4) -M(1) and M(1) -M(2) junctions using calipers and biplanar radiographs, respectively. An asymmetrical hollow beam model was employed to reconstruct cross sections and calculate bending rigidities and strengths in the sagittal and transverse planes. Among adults, Tigara have greater transverse corpus width, bending rigidity, and strength, and ratios of transverse to sagittal dimensions than Arikara. This shape difference develops gradually during growth, with only weak trends among young juveniles, increasing to near-adult contrasts among adolescents. These results support a role for functional mechanical loading of the mandible during growth in producing adult differences in mandibular corpus morphology.  相似文献   

20.
Experimental determination of the strain distribution in prismatic, square cross-section bars of human compact bone in torsion disclosed nonclassical effects associated with the microstructure. Specifically, in wet bone at small strain, significant deviations from the classically predicted strain distribution were observed. The measured strain distribution in wet bone followed predictions based on Cosserat (micropolar) elasticity. In dry bone, the strain distribution was very close to the prediction of classical elasticity. The interaction between Haversian osteons and the cement substance between them was hypothesized to be the principal mechanism for the phenomena. To evaluate this hypothesis, additional specimens were subjected to prolonged torsional load and the cement lines were observed by reflected light microscopy. Localized deformation at the cement lines was observed, but it was less than values reported earlier for bovine plexiform bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号