首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Nonadrenergic bronchodilation in adult and young guinea pigs   总被引:2,自引:0,他引:2  
The contribution of the nonadrenergic inhibitory system to airway responses to infusion of 5-hydroxytryptamine (5-HT) was evaluated in anesthetized, tracheotomized, and paralyzed young (13 days) and adult (82 days) guinea pigs. Animals were mechanically ventilated by a constant flow ventilator. Compliance (C) and conductance (G) of the respiratory system were continuously monitored. Three series of experiments were performed involving intravenous pretreatment with 1) atropine (3 mg/kg) and propranolol (1 mg/kg); 2) atropine (3 mg/kg), propranolol (1 mg/kg), and phentolamine (2 mg/kg); and 3) atropine (3 mg/kg) and hexamethonium (2 mg/kg). 5-HT was then intravenously infused for 5 min at a rate of 40 ng.kg-1.s-1 in adults and 60 ng.kg-1.s-1 in young guinea pigs to obtain the same degree of bronchoconstriction in both groups. At the 3rd min of the infusion, bilateral cervical vagotomy was performed and C and G were measured at the maximal response, 1-2 min thereafter. Vagotomy increased bronchoconstriction (P less than 0.01) in both young animals and adults. Phentolamine did not modify this increase, but hexamethonium completely inhibited it. These results indicate that, in adult and young guinea pigs, 5-HT infusion induces reflex activation of the nonadrenergic inhibitory system, which in turn modulates the bronchoconstrictor responses to 5-HT. This neural modulation is not mediated by an alpha-adrenergic pathway.  相似文献   

2.
1. In isolated turtle hearts bovine parathyroid hormone (b-PTH) (1-34) stimulated both force of contraction and rate (beats/min) apparently stimulating beats/min to a larger extent. 2. Isoproterenol stimulated both rate and force, perhaps affecting contractile force more. 3. Propranolol alone clearly decreased contractile force and beats/min. 4. Pre-treatment with propranolol removed stimulatory effects of both bPTH (1-34) and isoproterenol. Propranolol's effect on isoproterenol was expected. Its effect on bPTH (1-34) may be related to beta-stimulation by PTH or to some other non-specific inhibitory effect of propranolol.  相似文献   

3.
Adrenergic reactivity of the myocardium in hypertension   总被引:2,自引:0,他引:2  
Adrenoceptor-mediated inotropic and chronotropic responses have been studied in isolated atria from a younger and an older group of spontaneously hypertensive (SHR) and age-matched normotensive rats (NR). The isoproterenol/phenylephrine potency ratios were significantly lower in the older SHR than in age-matched NR. Exposure of left atria to cocaine, iproniazid and tropolone to inhibit major pathways of agonist inactivation significantly enhanced the potency of both agonists in NR but did not influence agonist potencies in SHR and the agonist potency ratios remained different in the two groups. Inotropic responses to phenylephrine were blocked by metoprolol less effectively and by phentolamine more effectively in older SHR than in NR. Atrial sensitivity to isoproterenol was significantly higher in the younger than in the older SHR. Chronic treatment of SHR with propranolol, 5–20 mg/kg/day i.p. from age 4 to 14 weeks and stopped 2 days before the experiment, limited the increase in blood pressure and increased the potency of isoproterenol and decreased the potency of phenylephrine to or beyond levels in NR. The effectiveness of adrenoceptor antagonists in SHR did not significantly change with age or after propranolol treatment. The results were interpreted to indicate that 1) mechanisms of agonist inactivation are impaired or non-functional in the SHR myocardium; 2) there is a shift in the balance of cardiac inotropic adrenoceptors from β toward α between normotensive and hypertensive rats, and 3) β-adrenoceptors are subsensitive in adult SHR, but become supersensitive to isoproterenol after chronic treatment with propranolol.  相似文献   

4.
Although the beta(1)-adrenergic agent dobutamine is used clinically to provide inotropic support to the failing myocardium, it could jeopardize the myocardium by depleting energy reserves. This investigation delineated the contractile and energetic effects of low versus high dobutamine doses in the hypoperfused right ventricular (RV) myocardium. The right coronary artery (RCA) of anesthetized dogs was cannulated for controlled perfusion with arterial blood, and regional RV contractile function was measured. RCA perfusion pressure was lowered from 100 mmHg baseline to 40 mmHg, and flow fell by 54%. At 15-min hypoperfusion, dobutamine was infused into the RCA at either 0.01 (low-dose dobutamine) or 0.06 microgram. kg(-1). min(-1) (high-dose dobutamine) for 15 min. Regional power (systolic segment shortening x isometric developed force x heart rate) stabilized at 63% of baseline during hypoperfusion. Low-dose dobutamine restored power to baseline but did not increase RV myocardial O(2) consumption (MVO(2)) and thus increased myocardial O(2) utilization efficiency (O(2)UE:power/MVO(2)). At 5 min, high-dose dobutamine enhancement of power was similar to that of low-dose dobutamine, but by 15 min, power and O(2)UE fell to untreated levels. Remarkably, low-dose dobutamine tripled cytosolic phosphorylation potential; in contrast, high-dose dobutamine lowered phosphorylation potential to 45% of the untreated value. Analyses of glucose uptake and glycolytic intermediates revealed sustained enhancement of glycolysis by low-dose dobutamine, but glycolysis became limited at glyceraldehyde 3-phosphate dehydrogenase during high-dose dobutamine treatment. In summary, low-dose dobutamine improved mechanical performance and efficiency of the hypoperfused RV myocardium while increasing myocardial energy reserves, but high-dose dobutamine failed to sustain improved function and depleted energy reserves. Dobutamine is capable of improving both contractile function and cellular energetics in the hypoperfused RV myocardium, but dosage should be carefully selected.  相似文献   

5.
Carvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction. Female rats (8 weeks old) that underwent bilateral ovariectomy were randomly assigned to receive daily treatment with carvedilol (OVX+CAR, 20 mg/kg), placebo (OVX) and SHAM for 58 days. Left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10−8 to 10−2 M) were assessed. Expression of calcium handling proteins was measured by western blot analysis. Carvedilol treatment in the OVX animals: prevented weight gain and slight hypertrophy, restored the reduced positive inotropic responses to Ca2+ and isoproterenol, prevented the reduction in SERCA2a expression, abolished the increase in superoxide anion production, normalized the increase in p22phox expression, and decreased serum angiotensin converting enzyme (ACE) activity. This study demonstrated that myocardial contractile dysfunction and SERCA2a down regulation were prevented by carvedilol treatment. Superoxide anion production and NADPH oxidase seem to be involved in this response.  相似文献   

6.
Beta-Adrenergic stimulation of the ventral prostate cyclic-AMP system was investigated by examining the influence of isoproterenol on endogenous cyclic-AMP levels as well as on the activities of adenylate cyclase CEC 4.6.1.1) and cyclic-AMP-dependent and independent protein kinases (EC 2.7.1.37). Administration of isoproterenol (1 mg/kg, ip) resulted in rapid elevation of adenylate cyclase activity (119%) and cyclic-AMP levels (593%). The observed isoproterenol-stimulated changes in cyclic-AMP metabolism of the ventral prostate were time-dependent and maximal stimulation was seen 5 min after treatment with this beta-adrenergic agonist. The increases in prostatic adenylate cyclase and cyclic-AMP also were related to the dose of isoproterenol administered and maximal enhancement of these parameters was seen with 1 mg/kg dose of the agonist. Whereas pretreatment of rats with propranolol (3mg/kg, ip) partially reversed these alterations, administration of an alpha-adrenergic antagonist, phentolamine, even at a dose of 5 mg/kg, failed to elicit any appreciable effect. Stimulation of prostatic soluble protein kinase by isoproterenol was associated with a decrease (33%) in the activity of the cyclic-AMP-dependent protein kinase with a concomitant increase (25%) in that of the independent enzyme. Whereas the ability of the enzyme to bind cyclic-(3H) AMP in vitro was decreased (54%) following isoproterenol treatment, the protein kinase activity ratio (-cyclic-AMP/+cyclic AMP) was significantly elevated from 0.51+/0.05 to 0.95+/0.08. Although propranolol alone had little or no effect on these parameters, it inhibited partially the isoproterenol-induced alterations in cyclic-AMP-dependent protein kinase and the cyclic-AMP binding capacity. Treatment with propranolol also blocked the increases in the kinase activity ratio and in the activity of cyclic-AMP-independent enzyme seen with isoproterenol. Data suggest that the concentration of ventral prostate cyclic-AMP as well as the activities of adenylate cyclase and cyclic-AMP-dependent and independent form of protein kinases are subject to modulation by beta-adrenergic stimulation.  相似文献   

7.
Conscious adult ewes prepared with nonocclusive indwelling vascular catheters were used to determine the mechanism by which heart rate increases during central administration of prostaglandin E2 (PGE2). Heart rate increased 14 bpm during steady-state intracarotid infusion of PGE2, 10 ng/kg/min (P less than 0.05). Intravenous atropine methyl bromide, 1 mg/kg, increased heart rate 26 bpm (P less than 0.05) 5 min after injection. Heart rate remained elevated 30 min after injection. The heart rate response to PGE2 plus atropine was greater than the heart rate response to either atropine or PGE2 alone (P less than 0.05). Propranolol, 1 mg/kg bolus plus intravenous infusion, 0.025 mg/kg/min, did not change resting heart rate. Propranolol attenuated but did not abolish the increase in heart rate caused by intracarotid PGE2. Although heart rate increased in response to PGE2 after administration of either propranolol or atropine alone, the combination of propranolol and atropine prevented any further increase in heart rate during subsequent PGE2 infusion. The increase in heart rate when all three drugs were given together was not different from the increase observed during atropine alone. Thus, both beta-adrenergic activation and muscarinic deactivation contribute to the PGE2-induced tachycardia.  相似文献   

8.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

9.
Adrenergic and cholinergic tone on the cardiovascular system of embryonic chickens was determined during days 12, 15, 19, 20, and 21 of development. Administration of the muscarinic antagonist atropine (1 mg/kg) resulted in no significant change in heart rate or arterial pressure at any developmental age. In addition, the general cardiovascular depressive effects of hypoxia were unaltered by pretreatment with atropine. In addition, the ganglionic blocking agent hexamethonium (25 mg/kg) did not induce changes in heart rate. The beta-adrenergic antagonist propranolol (3 mg/kg) induced a bradycardia of similar magnitude on all days studied, with a transient hypertensive action on days 19-20, indicating the existence of an important cardiac and vascular beta-adrenergic tone. Injections of the alpha-adrenergic antagonists prazosin or phentolamine (1 mg/kg) reduced arterial pressure significantly on all days of incubation studied. Collectively, the data indicate that embryonic chickens rely primarily on adrenergic control of cardiovascular function, with no contribution from the parasympathetic nervous system.  相似文献   

10.
This study is the first to report on vascular effect of the chromogranin A derived Vasostatin-I (CgA(1-76)) in vivo. Cardiovascular parameters were recorded in 29 rabbits with sympathetically decentralized right carotid vascular bed. The recombinant human STA CgA(1-78) (VS-1) was infused at 480 μg/kg over 25 min. Group I was kept awake while groups II-V were anesthetized with Ketamine-xylazine. VS-1 was given alone in groups I-II while in presence of either phentolamine, phentolamine plus propranolol or hexamethonium in groups III-V. Serum VS-1 peaked at 2 μg/ml (200 nM) before onset of vascular effects and declined rapidly to ~200 ng/ml within 30 min. In all groups but III and IV VS-1 induced a brief vasoconstriction, being larger in intact than in sympathetically decentralized beds. The VS-1 induced vasoconstriction was not altered by hexamethonium but was abolished by phentolamine. In presence of the α-adrenergic blocker a long lasting vasodilatation, unaffected by propranolol, was apparent on both innervated and decentralized sides. In conclusion, VS-1 induced an α-adrenoceptor-mediated vasoconstriction presumably brought about by noradrenaline release from sympathetic nerves when infused at a dose giving an initial serum concentration of ~200 nM. This initial vasoconstriction masked a persistent adrenoceptor-independent vasodilatation, consistent with previous reports from in vitro models.  相似文献   

11.

Background

It has been suggested that an extensive contractile reserve identified recognised by means of dobutamine stress echocardiography may predict a better prognosis in patients with severe left ventricular dysfunction at rest. However, the clinical use of dobutamine stress echocardiography may be limited in patients with chronic heart failure by the substantial proportion of such patients treated with beta-blockers, since the inotropic response to adrenergic stimulation is known to be attenuated in patients receiving beta-adrenoceptor blockers. Enoximone is a positive inotropic agent that inhibits cyclic adenosine monophosphate-specific phosphosdiesterase. We therefore tested the hypothesis that enoximone may be an alternative to dobutamine in evaluating left ventricular contractile reserve in patients with systolic dysfunction on chronic beta-blocker therapy.

Methods

We studied 26 patients (21 males and five females) with a mean age of 58 ± 10 years: 11 were not receiving beta-blockers (noBB group); 15 were receiving carvedilol at a mean dose of 34 mg/day (BB group). Dobutamine was infused at doses of 5 and 10 micrograms/kg/min, and enoximone at a dose of 1.5 mg/kg.

Results

The ejection fraction in the noBB group increased by 9% with dobutamine and 8.73% with enoximone (p = 0.86); in the BB group, it increased by 6% with dobutamine and 8.94% with enoximone (p = 0.03). Regional peak systolic velocities were evaluated by means of tissue Doppler imaging in four basal and four medium level segments. In the noBB group, they increased more with dobutamine than with enoximone in three of the eight segments; no significant differences were found in the BB group. Dobutamine induced non-sustained ventricular tachycardia in three patients and supraventricular tachycardia in one, whereas enoximone did not induce any repetitive arrhythmias.

Conclusions

Enoximone might be preferable to low-dose dobutamine for evaluating left ventricular contractile reserve in chronically beta-blocked heart failure patients as it is slightly more potent and has a better safety profile.  相似文献   

12.
Despite reductions in beta-adrenoreceptor (beta-AR)-mediated inotropic effects induced by sustained sympathetic activation in cardiac disease, whether these changes necessarily result in reductions in systolic function under resting conditions (baseline function) is not clear. Moreover, possible compensatory mechanisms which might contribute to maintaining the baseline systolic function despite reductions in beta-AR-mediated inotropic effects have not been systematically sought. In the present study, 1 month of daily administration of the beta-AR agonist, isoproterenol (0.05 mg/kg/day, i.p.), to rats resulted in an attenuation of left ventricular inotropic responses to isoproterenol over a wide range of concentrations (10(-8)-10(-4) M), whereas a decline of inotropic responses to norepinephrine, an endogenous inotrope, occurred only at high concentrations (10(-5)-10(-4) M). However, chronic isoproterenol administration failed to modify baseline systolic chamber and myocardial function, as determined in vivo using echocardiography (endocardial and midwall fractional shortening), and in isolated, perfused heart preparations (end-systolic chamber and myocardial elastance) Sustained baseline chamber function despite profound beta-AR-mediated inotropic downregulation was not attributed to alterations in cardiac loading conditions, resting heart rate, chamber remodeling, increased myocardial norepinephrine release, or enhanced contractile responses to alternative receptor/signal transduction pathways mediating positive inotropy (as assessed from histamine, serotonin, forskolin, angiotensin II or phenylephrine responsiveness). These findings indicate that baseline cardiac contractile function might be unaltered despite a profound impairment of beta-AR-induced responsiveness, an effect related to a preserved stimulatory influence of low physiological concentrations of endogenous norepinephrine constituting adrenergic tone at rest.  相似文献   

13.
Catecholamines are important in the modulation of smooth muscle contractile activity; this study was undertaken to evaluate adrenoceptor stimulation of intracellular inositol-phosphate production in a genital tract smooth muscle myocyte. DDT1 MF-2 smooth muscle myocytes, derived from a hamster ductus deferens leiomyosarcoma, were loaded with 3H-inositol, incubated in 10 mM LiCl, then stimulated with adrenergic agonists with and without antagonists. Subsequently, the inositol phosphates were isolated by anion-exchange chromatography. In the presence of norepinephrine (NE), inositol trisphosphate (IP3) was produced by 30 s and peaked at 2 min; inositol 1-phosphate was also apparent by 30 s, and continued to increase over 15 min. Clonidine (an alpha-2 agonist), isoproterenol, and NE in the presence of phentolamine or prazosin (an alpha-1 antagonist) failed to increase IP3. In contrast, NE in the presence of yohimbine (an alpha-2 antagonist) or propranolol stimulated IP3 production to levels comparable to that stimulated by NE alone. These studies provide evidence that inositol phosphate production is involved in alpha-1 adrenergic signal transduction in DDT1 MF-2 myocyte.  相似文献   

14.
There is no direct evidence to indicate that pump dysfunction in a dilated chamber reflects the impact of chamber dilatation rather than the degree of intrinsic systolic failure resulting from myocardial damage. In the present study, we explored the relative roles of intrinsic myocardial systolic dysfunction and chamber dilatation as mediators of left ventricular (LV) pump dysfunction. Administration of isoproterenol, a beta-adrenoreceptor agonist, for 3 mo to rats (0.1 mg.kg(-1).day(-1)) resulted in LV pump dysfunction as evidenced by a reduced LV endocardial fractional shortening (echocardiography) and a decrease in the slope of the LV systolic pressure-volume relation (isolated heart preparations). Although chronic beta-adrenoreceptor activation induced cardiomyocyte damage (deoxynucleotidyl transferase-mediated dUTP nick-end labeling) as well as beta(1)- and beta(2)-adrenoreceptor inotropic downregulation (attenuated contractile responses to dobutamine and salbutamol), these changes failed to translate into alterations in intrinsic myocardial contractility. Indeed, LV midwall fractional shortening (echocardiography) and the slope of the LV systolic stress-strain relation (isolated heart preparations) were unchanged. A normal intrinsic myocardial systolic function, despite the presence of cardiomyocyte damage and beta-adrenoreceptor inotropic downregulation, was ascribed to marked increases in myocardial norepinephrine release, to upregulation of alpha-adrenoreceptor-mediated contractile effects as determined by phenylephrine responsiveness, and to compensatory LV hypertrophy. LV pump failure was attributed to LV dilatation, as evidenced by increased LV internal dimensions (echocardiography), and a right shift and increased volume intercept of the LV diastolic pressure-volume relation. In conclusion, chronic sympathetic stimulation, despite reducing beta-adrenoreceptor-mediated inotropic responses and promoting myocyte apoptosis, may nevertheless induce pump dysfunction primarily through LV dilatation, rather than intrinsic myocardial systolic failure.  相似文献   

15.
It has been found that pretreatment with a delta 1-opioid receptor agonist, DPDPE, in dose of 0.1 mg/kg intravenously 15 min before heart isolation, prevents appearance of reperfusion, ventricular arrhythmias during total global ischemia (45 min) and reperfusion (10 min) of isolated rat heart. This effect was dose-dependent. Addition of DPDPE to the perfusion solution in a final concentration of 0.1 mg/L and/or 0.5 mg/L 15 min before ischemia also decreased the incidence of reperfusion arrhythmias in a concentration-dependent manner. Addition of DPDPE to the perfusion solution in a final concentration of 0.1 mg/L also decreased creatine kinase levels in the coronary sinus. However DPDPE had no cardio-protective effect in concentration of 0.5 mg/L or after intravenous administration. A previous intravenous injection of DPDPE in dose of 0.5 mg/kg exacerbated reperfusion-induced contractile dysfunction of isolated heart but exerted no effect in dose of 0.1 mg/kg. Previous perfusion of the rat isolated heart by DPDPE in concentration of 0.1 mg/L and 0.5 mg/L 15 min before ischemia also exacerbated myocardial contractile dysfunction during reperfusion. It is proposed that the antiarrhythmic, cardio-protective and negative inotropic effect of DPDPE during reperfusion may be due to stimulation of cardiac delta-1 receptors.  相似文献   

16.
Whether the positive inotropic effect of isoproterenol in ventricular strips of carp heart is altered by previous exposure to the agonist was studied. Isoproterenol produced a concentration-dependent positive inotropic effect in these preparations which was competitively antagonized by propranolol. Isoproterenol dose-response curves were shifted significantly downward and to the right after previous treatment with and removal of isoproterenol. The desensitization could be demonstrated after 5 min incubation and near maximal desensitization was observed after 30 min exposure to 1000 nM isoproterenol. The responsiveness was only partially recovered after 180 min incubation in drug-free medium. Isoproterenol produces a rapidly developing desensitization to inotropic effects of the beta-adrenergic agonist. This phenomenon may be mediated by alterations in beta-adrenergic receptors, adenylate cyclase and/or the beta receptor-adenylate cyclase coupling mechanism.  相似文献   

17.
The adrenergic inhibition of lipogenesis and stimulation of lipolysis in the avian has been examined using chicken hepatocytes and adipose tissue explants in vitro. Lipogenesis was inhibited by adrenergic agonists: epinephrine (alpha + beta) greater than isoproterenol (beta 1/beta 2) greater than norepinephrine (alpha 1/alpha 2, beta 1) greater than metaproterenol (beta 2), phenylephrine (alpha 1). Dobutamine (beta 1 agonist) and dopamine (dopaminergic agonist) did not significantly affect [14C]acetate incorporation into lipid, while clonidine and para-aminoclonidine (alpha 2 agonists) were slightly stimulatory. Lipolysis in young and adult chicken adipose tissue was stimulated by epinephrine, isoproterenol, phenylephrine, dobutamine and metaproterenol, but was inhibited by clonidine and para-aminoclonidine. Both the antilipogenic and lipolytic effects of epinephrine were partially blocked by phentolamine (alpha 1 = alpha 2 antagonist) or propranolol (beta 1 = beta 2 antagonist), but completely inhibited by phentolamine and propranolol administered together.  相似文献   

18.
Noradrenaline, isoproterenol, dobutamine were found to modulate kinetics of quanta secretion so as to synchronize the transmitter release. This effect could be prevented with blocking agents of beta-adrenoreceptor (atenolol, propranolol). Activators of beta-adrenoreceptors klonidine and phenylephrine did not change the kinetics of quanta secretion, whereas phentolamine did not affect the synchronizing effect of noradrenaline. The change in the time course of the secretion induced by noradrenaline increased the end-plate current amplitude. There seems to exist a specific presynaptic mechanism involving beta-adrenoreceptors for facilitation of effects of sympathomimetics.  相似文献   

19.
In aware of the well-known altered vascular responsiveness in the diabetic vasculature, this study aimed to compare the haemodynamic and PGI2 releasing effects of angiotensin in metabolically healthy (12) and alloxan-(560 umol/kg) diabetic (12) dogs as well as to analyze the role of vascular adrenoceptors in this. In vivo the effect of intracoronarially administered angiotensin (63-125-250-500-1000 pmol/kg/min) on coronary blood flow, mean arterial blood pressure, myocardial contractile force and heart rate was investigated without and with pretreatment of 2 umol/kg phentolamine. In vitro PGI2 release by isolated coronary rings was induced by 50 nmol/1 angiotensin before and after pretreatment with 5 umol/1 phentolamine and measured by radioimmunoassay. Angiotensin enhances dose-dependently both the mean arterial blood pressure and coronary blood flow, while it provokes a considerable (p < 0.05) increase of PGI2 formation by isolated coronary arterial rings. These alterations could be prevented by phentolamine administration both in vivo and in vitro, while this drug did not affect the angiotensin-induced enhancement of diabetic coronary blood flow. On the other hand the increase of blood pressure by angiotensin was found to be more (p < 0.05) expressed in diabetes and it could be further potentiated by phentolamine. PGI2 synthesis by isolated diabetic coronary rings could not be modified either by angiotensin alone or in combination with phentolamine. On the basis of above data, the lack of stimulated vascular PGI2 formation mediated by alpha-adrenergic mechanisms is supposed to causatively contribute to the diminished sensitivity of diabetic coronary arteries to vasodilation.  相似文献   

20.
The effect of isoproterenol (1 microM) on the force of isometric contractions (0.1-1.0 Hz, 30 +/- 1 degree C, 1.8 mM Ca2+) of papillary muscles of the right ventricle of the heart of the ground squirrel during summer activity (n = 5) and hibernation (activity between hibernation bouts, n = 4; torpor, n = 4; and arousal, n = 5) has been studied. It was shown that isoproterenol increases the force of contraction (positive inotropic effect) in active summer ground squirrels by 20 +/- 3 and 61 +/- 7% at stimulation frequencies of 0.4 and 1.0 Hz, respectively. The isoproterenol-induced increase in the force of contraction in animals during hibernation is brief (within 3 min after the onset of treatment) and this parameter decreases by 30-50% of the control level (negative inotropic effect) at stimulation frequencies from 0.3 and 0.8 Hz. The positive inotropic effect of isoproterenol in active summer ground squirrels is associated with a decrease in the relative value of the potentiating effect of the pause (qualitative indicator of calcium content in the sarcoplasmic reticulum), and the negative inotropic effect, with its increase. It was found that the inotropic effect of isoproterenol in all groups of animals examined (irrespective of its direction) is accompanied by an acceleration of the velocity of the contraction-relaxation cycle. The dependence of the effect of isoproterenol in the heart of hibernating animals on seasonal changes in the calcium homeostasis and the activity of the sympathetic nervous system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号