首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omasal ciliated protozoa in cattle, bison, and sheep.   总被引:2,自引:2,他引:0       下载免费PDF全文
Omasal contents were collected from slaughtered cattle (n = 54), bison (n = 15), and sheep (n = 40) to determine numbers and generic distribution of ciliated protozoa. Total protozoan numbers were significantly lower in omasal contents than in ruminal contents of all three species, but the percent composition of all protozoan genera was similar between omasal and ruminal populations. The highest numbers of omasal protozoa found were 7.61 X 10(5)/g in cattle, 7.01 X 10(5)/g in bison, and 1.29 X 10(6)/g in sheep. Omasal dry matter was significantly higher than ruminal dry matter in all species and ranged up to 51.5% in cattle fed high-concentrate diets. The omasal pH was similar to the ruminal pH in all species. The number of omasal laminae averaged 149, 145, and 74 for cattle, bison, and sheep, respectively. Although protozoan concentrations in omasal contents were approximately 80% lower than those in ruminal contents, the omasum harbored relatively high numbers of ciliated protozoa. The resident omasal protozoa are extremely difficult to remove, particularly in cattle, and apparently are responsible for reinoculating transiently defaunated rumens.  相似文献   

2.
Ruminal contents from 79 slaughtered bison and 2 ruminally cannulated bison were collected to obtain information on total numbers and species distribution of ciliated protozoa. The bison originated from numerous herds throughout the Great Plains and were grouped into three dietary categories: (i) only forage; (ii) forage with moderate levels of supplementation; and (iii) feedlot concentrate-silage diet. Total ciliate counts were highest in bison receiving grain supplementation (210.1 x 10(4)/g) and lowest in bison consuming only forage (27.1 x 10(4)/g). All protozoan species found in bison have been reported in domestic livestock, although Ophryoscolex sp., a relatively common protozoan in cattle, was detected at low concentrations in only eight bison. The uncommon holotrich Microcetus lappus was present in five bison in concentrations reaching 8.4% of the total ciliate population. Charonina ventriculi, another infrequently observed species, was present in 18 bison, with the highest concentrations in forage-fed animals. Thirty bison possessed a type B protozoan population, characterized by Epidinium sp., Eudiplodinium maggii, and Eudiplodinium bovis. Thirty-eight bison possessed a mixed A-B population, characterized by Polyplastron sp. coexisting with low numbers of Eudiplodinium maggii or Epidinium sp. or both. Thirteen bison possessed populations lacking any remnant type B ciliate species. At least 29 of the bison possessing Polyplastron sp. were known to have been in contact with cattle, whereas all bison isolated from cattle had type B populations. The reduction of type B populations in bison becomes increasingly likely as bison production expands into areas inhabited by domestic livestock.  相似文献   

3.
Ruminal ciliated protozoa in bison.   总被引:1,自引:1,他引:0       下载免费PDF全文
G Towne  T G Nagaraja    K K Kemp 《Applied microbiology》1988,54(11):2733-2736
Ruminal contents from 79 slaughtered bison and 2 ruminally cannulated bison were collected to obtain information on total numbers and species distribution of ciliated protozoa. The bison originated from numerous herds throughout the Great Plains and were grouped into three dietary categories: (i) only forage; (ii) forage with moderate levels of supplementation; and (iii) feedlot concentrate-silage diet. Total ciliate counts were highest in bison receiving grain supplementation (210.1 x 10(4)/g) and lowest in bison consuming only forage (27.1 x 10(4)/g). All protozoan species found in bison have been reported in domestic livestock, although Ophryoscolex sp., a relatively common protozoan in cattle, was detected at low concentrations in only eight bison. The uncommon holotrich Microcetus lappus was present in five bison in concentrations reaching 8.4% of the total ciliate population. Charonina ventriculi, another infrequently observed species, was present in 18 bison, with the highest concentrations in forage-fed animals. Thirty bison possessed a type B protozoan population, characterized by Epidinium sp., Eudiplodinium maggii, and Eudiplodinium bovis. Thirty-eight bison possessed a mixed A-B population, characterized by Polyplastron sp. coexisting with low numbers of Eudiplodinium maggii or Epidinium sp. or both. Thirteen bison possessed populations lacking any remnant type B ciliate species. At least 29 of the bison possessing Polyplastron sp. were known to have been in contact with cattle, whereas all bison isolated from cattle had type B populations. The reduction of type B populations in bison becomes increasingly likely as bison production expands into areas inhabited by domestic livestock.  相似文献   

4.
Ruminal microbial populations, fermentation characteristics, digestibility, and liquid flow rates in two ruminally cannulated bison and two ruminally cannulated Hereford steers fed a prairie hay diet were compared. No significant differences in anaerobic bacterial counts, volatile fatty acid concentrations, or ruminal pHs were evident between bison and cattle. Also, no significant differences in neutral detergent fiber digestibility, indigestible fiber retention time, or intake were detected between bison and cattle, although cattle had higher levels (P less than 0.08) of ruminal dry matter and indigestible fiber than bison. Bison had a smaller (P = .02) ruminoreticular volume, faster liquid dilution rates, and faster liquid turnover times than cattle. The average ruminal ammonia nitrogen concentration was higher (P = 0.02) in bison (1.17 mg/dl) than in cattle (0.79 mg/dl). Total ciliate protozoal counts and cell volume were greater (P = 0.07) in bison (32.8 x 10(4)/g and 407.1 x 10(-4) ml/g, respectively) than in cattle (15.7 x 10(4)/g and 162.2 x 10(-4) ml/g, respectively). Bison harbored higher (P less than 0.02) numbers of Dasytricha spp., Eudiplodinium maggii, Eudiplodinium bursa, and Epidinium spp. than cattle and possessed a type B protozoan population. The cattle possessed a mixed type A-type B population that was characterized by Ophryoscolex spp. and Polyplastron spp. in association with low concentrations of Epidinium spp. and Eudiplodinium maggii.  相似文献   

5.
Ruminal microbial populations, fermentation characteristics, digestibility, and liquid flow rates in two ruminally cannulated bison and two ruminally cannulated Hereford steers fed a prairie hay diet were compared. No significant differences in anaerobic bacterial counts, volatile fatty acid concentrations, or ruminal pHs were evident between bison and cattle. Also, no significant differences in neutral detergent fiber digestibility, indigestible fiber retention time, or intake were detected between bison and cattle, although cattle had higher levels (P less than 0.08) of ruminal dry matter and indigestible fiber than bison. Bison had a smaller (P = .02) ruminoreticular volume, faster liquid dilution rates, and faster liquid turnover times than cattle. The average ruminal ammonia nitrogen concentration was higher (P = 0.02) in bison (1.17 mg/dl) than in cattle (0.79 mg/dl). Total ciliate protozoal counts and cell volume were greater (P = 0.07) in bison (32.8 x 10(4)/g and 407.1 x 10(-4) ml/g, respectively) than in cattle (15.7 x 10(4)/g and 162.2 x 10(-4) ml/g, respectively). Bison harbored higher (P less than 0.02) numbers of Dasytricha spp., Eudiplodinium maggii, Eudiplodinium bursa, and Epidinium spp. than cattle and possessed a type B protozoan population. The cattle possessed a mixed type A-type B population that was characterized by Ophryoscolex spp. and Polyplastron spp. in association with low concentrations of Epidinium spp. and Eudiplodinium maggii.  相似文献   

6.
The objective of this study was to assess the influence of ciliated protozoa on ruminal fermentation in cattle fed high-grain diets. Six ruminally cannulated steers fed a corn-based grain diet (85% concentrate plus 15% alfalfa hay) at 12-h intervals were assigned randomly to two groups, ciliate free and faunated, in a crossover design. Defaunation was by ruminal emptying, omasal flushing, and treatment with sodium sulfosuccinate. Two to 3 weeks after defaunation, the ruminal contents of all steers were sampled before the morning feeding (0 h) and at 1, 2, 4, 6, 8, and 12 h after feeding to measure pH, analyze fermentation products, and monitor counts of ciliated protozoa and lactic acid-producing and -fermenting bacterial groups. Total numbers of ciliated protozoa in the faunated steers averaged 4.3 x 10(5)/g, and the protozoa consisted of nine genera. Ciliate-free steers had lower (P less than 0.01) ruminal pHs (pH 5.97) than faunated cattle (pH 6.45); however, the treatment-time interaction was not significant. Ruminal lactate and ammonia concentrations were similar in both groups. The total volatile fatty acid concentration was higher (P less than 0.05) in the ciliate-free steers than in the faunated steers and exhibited a treatment-time interaction (P less than 0.05). The acetate-to-propionate ratio was higher (P less than 0.05) in the faunated group than in the ciliate-free group and showed a treatment-time interaction (P less than 0.05). Total anaerobic bacterial counts were about fourfold higher in the ciliate-free group than in the faunated group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The objective of this study was to assess the influence of ciliated protozoa on ruminal fermentation in cattle fed high-grain diets. Six ruminally cannulated steers fed a corn-based grain diet (85% concentrate plus 15% alfalfa hay) at 12-h intervals were assigned randomly to two groups, ciliate free and faunated, in a crossover design. Defaunation was by ruminal emptying, omasal flushing, and treatment with sodium sulfosuccinate. Two to 3 weeks after defaunation, the ruminal contents of all steers were sampled before the morning feeding (0 h) and at 1, 2, 4, 6, 8, and 12 h after feeding to measure pH, analyze fermentation products, and monitor counts of ciliated protozoa and lactic acid-producing and -fermenting bacterial groups. Total numbers of ciliated protozoa in the faunated steers averaged 4.3 x 10(5)/g, and the protozoa consisted of nine genera. Ciliate-free steers had lower (P less than 0.01) ruminal pHs (pH 5.97) than faunated cattle (pH 6.45); however, the treatment-time interaction was not significant. Ruminal lactate and ammonia concentrations were similar in both groups. The total volatile fatty acid concentration was higher (P less than 0.05) in the ciliate-free steers than in the faunated steers and exhibited a treatment-time interaction (P less than 0.05). The acetate-to-propionate ratio was higher (P less than 0.05) in the faunated group than in the ciliate-free group and showed a treatment-time interaction (P less than 0.05). Total anaerobic bacterial counts were about fourfold higher in the ciliate-free group than in the faunated group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Ruminal microbial populations and fermentation products were compared between two ruminally cannulated bison (375 kg) and two ruminally cannulated Hereford steers (567 kg) on alfalfa or prairie hay diets. Differential media were used to enumerate carbohydrate-specific bacterial subgroups. Voluntary dry matter intake was higher (P=0.006) for cattle than for bison fed alfalfa, but prairie hay intake was not different (P=0.16) between the two species. Volatile fatty acid concentrations, pH, and ruminal ammonia were similar between bison and cattle on both diets. Total anaerobic bacteria and xylanolytic bacterial counts were higher (P<0.02) in bison than in cattle fed alfalfa. However, with the prairie hay diet, no differences in bacterial counts on any medium were observed between ruminant species. Both bison and cattle possessed a mixed A-B protozoan population with nearly identical protozoan numbers and distribution of genera. The similarities between bison and cattle consuming either high-or low-quality forage suggest that any differences in putative forage digestibility between the species are not due to differences in microbial counts.  相似文献   

9.
Ruminal cellulolytic bacteria and protozoa and in vitro digestibility of alfalfa fiber fractions were compared among bison, bison hybrids, and crossbed cattle (five each) when they were fed alfalfa and corn in a ratio of 100:0, 75:25, and 50:50, respectively. The total number of viable bacteria (2.16 x 10(9) to 5.44 x 10(9)/ml of ruminal fluid) and the number of cellulolytic bacteria (3.74 x 10(7) to 10.9 x 10(7)/ml) were not different among groups of animals fed each diet. The genera of protozoa in all of the animal groups were similar; however, when either the 100:0 or 50:50 diet was used the percentage of Entodinium sp. was lower and the percentage of Diplodiniinae was higher (P less than 0.05) in bison than in bison hybrids or cattle. Bacteroides succinogenes made up the largest number of cellulolytic isolates from bison (58 and 36%, respectively, on the 100:0 and 75:25 diets), which were more numerous (P less than 0.05) than those from bison hybrids (36 and 12%) and cattle (33 and 18%). This was offset by a lower number of cellulolytic Butyrivibrio isolates. The numbers of Ruminococcus albus and R. flavefaciens isolates, in general, were similar among the bovid species, although R. flavefaciens generally made up less than 10% of the cellulolytic isolates. In vitro digestibility coefficients were greater (P less than 0.05) for the bison when the 75:25 diet was used and similar for the other two diets. The concentration of ruminal volatile fatty acids was larger (P less than 0.05) in bison than in bison hybrids and cattle when the 50:50 diet was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ruminal cellulolytic bacteria and protozoa and in vitro digestibility of alfalfa fiber fractions were compared among bison, bison hybrids, and crossbed cattle (five each) when they were fed alfalfa and corn in a ratio of 100:0, 75:25, and 50:50, respectively. The total number of viable bacteria (2.16 x 10(9) to 5.44 x 10(9)/ml of ruminal fluid) and the number of cellulolytic bacteria (3.74 x 10(7) to 10.9 x 10(7)/ml) were not different among groups of animals fed each diet. The genera of protozoa in all of the animal groups were similar; however, when either the 100:0 or 50:50 diet was used the percentage of Entodinium sp. was lower and the percentage of Diplodiniinae was higher (P less than 0.05) in bison than in bison hybrids or cattle. Bacteroides succinogenes made up the largest number of cellulolytic isolates from bison (58 and 36%, respectively, on the 100:0 and 75:25 diets), which were more numerous (P less than 0.05) than those from bison hybrids (36 and 12%) and cattle (33 and 18%). This was offset by a lower number of cellulolytic Butyrivibrio isolates. The numbers of Ruminococcus albus and R. flavefaciens isolates, in general, were similar among the bovid species, although R. flavefaciens generally made up less than 10% of the cellulolytic isolates. In vitro digestibility coefficients were greater (P less than 0.05) for the bison when the 75:25 diet was used and similar for the other two diets. The concentration of ruminal volatile fatty acids was larger (P less than 0.05) in bison than in bison hybrids and cattle when the 50:50 diet was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A series of experiments with bison and cattle were conducted to obtain information on the relatively uncommon ruminal protozoan Microcetus lappus. Although M. lappus is a holotrich, diurnal changes in concentrations indicate that it follows a cycle unlike most other holotrichs, decreasing shortly after feed is offered and then gradually increasing over time. Concentrations of M. lappus varied widely among animals, exceeding 50% of the total protozoan population in some cattle. In bison, Microcetus concentrations averaged 2% of the protozoan population. Dietary protein and energy levels apparently did not influence Microcetus numbers. The highest concentrations of M. lappus were found in the reticulum, whereas the lowest numbers occurred in the mid-dorsal sac.  相似文献   

12.
A series of experiments with bison and cattle were conducted to obtain information on the relatively uncommon ruminal protozoan Microcetus lappus. Although M. lappus is a holotrich, diurnal changes in concentrations indicate that it follows a cycle unlike most other holotrichs, decreasing shortly after feed is offered and then gradually increasing over time. Concentrations of M. lappus varied widely among animals, exceeding 50% of the total protozoan population in some cattle. In bison, Microcetus concentrations averaged 2% of the protozoan population. Dietary protein and energy levels apparently did not influence Microcetus numbers. The highest concentrations of M. lappus were found in the reticulum, whereas the lowest numbers occurred in the mid-dorsal sac.  相似文献   

13.
Total numbers and distribution of genera, subgenera and species were determined for the ciliate protozoa in rumen contents of 4 Brazilian water buffalo Bubalus bubalis Linnaeus. The fauna of one animal, housed in close proximity to European and zebu-type cattle, differed considerably from that of the remaining animals, which were somewhat isolated on a large ranch. Several of the protozoan species observed in the semi-isolated animals were first described in rumen contents from humped Indian cattle, and their subsequent occurrence in other hosts and geographic locations has been limited or absent. In all, 49 different species of protozoa were found, 8 of which have not been previously described. Three of the new species belong to the genus Entodinium: E. ciculum sp. n., E. spinonucleatum sp. n. and E. triangulum sp. n.; 4 to Diplodinium (Ostracodinium): D. (O.) brazili sp. n., D. (O.) esalqum sp. n., D. (O.) nucleolobum sp. n., and D. (O.) tiete sp. n.; and one to Diplodinium (Eudiplodinium): D. (E.) bubalus sp. n.  相似文献   

14.
This report represents the first published information on intestinal ciliated protozoa in the African white rhinoceros (Ceratotherium simum Burchell, 1817). Two new genera which do not relate to any known ciliated protozoa from the intestines of mammals and five new species are described. The ciliates were found in the colon of three of these free-living hindgut-fermenting grazers that were shot in widely spaced districts in southern Africa. Phalodinium digitalis n. gen., n. sp., Arachnodinium noveni n. gen., n. sp., Monoposthium vulgaris n. sp., M. bracchium n. sp., and M. latus n. sp. constituted between 1% and 10% of the total ciliate population (ca. 1 X 10(5)/ml digesta) in the ascending colon. Exceedingly small numbers were observed in the descending colon, indicating temporary accommodation only.  相似文献   

15.
Fluctuations in ciliated protozoan concentrations were monitored in 40 individually fed crossbred heifers that were stepped up to an 85% concentrate diet either slowly (12 days) or rapidly (3 days), with or without monensin (30 ppm). Ruminal fluid was withdrawn from all animals by stomach tube at the start of the study, after each group reached full feed, and at 14-day intervals thereafter throughout the finishing period until termination (day 119). Neither monensin nor speed of step-up affected (P greater than 0.10) total protozoan concentrations, ruminal pH, or lactic acid concentrations. Average protozoan concentrations peaked on day 5, progressively declined until day 56, and then increased (P less than 0.05), suggesting an adaptation to ruminal conditions. Concentrations of Isotricha spp. were higher (P less than 0.05) on the final two sampling dates than at any other time. After day 28, Entodinium, Isotricha, and Polyplastron were the only surviving genera. Protozoa were not detected in 11 heifers on day 42 and day 56, but only two animals were defaunated on day 119, indicating either exogenous or endogenous refaunation. Average protozoan concentrations were not different (P greater than 0.25) between ruminal samples collected by stomach tube the day before slaughter (2.8 x 10(5)/g) and digesta samples collected the next day (1.6 x 10(5)/g). In feedlot cattle, defaunation apparently is transitory and individual animals harbor a dynamic protozoan population that fluctuates in response to changing ruminal conditions.  相似文献   

16.
Cobalamin (CBL), the biologically active form of vitamin B12, and its analogs, are produced by bacteria only if cobalt supply is adequate. The analogs differ generally by the nucleotide moiety of the molecule. In CBL, 5,6-dimethylbenzimidazole (5,6-DMB) is the base in the nucleotide moiety. The present study aimed to determine if a supplement of 5,6-DMB could increase utilization of dietary cobalt for synthesis of CBL and change ruminal fermentation, nutrient digestibility, omasal flow of nutrients and ruminal protozoa counts. Eight ruminally cannulated multiparous Holstein cows (mean±standard deviation=238±21 days in milk and 736±47 kg of BW) were used in a crossover design. Cows were randomly assigned to a daily supplement of a gelatin capsule containing 1.5 g of 5,6-DMB via the rumen cannula or no supplement. Each period lasted 29 days and consisted of 21 days for treatment adaptation and 8 days for data and samples collection. Five corrinoids, CBL and four cobamides were detected in the total mixed ration and the omasal digesta from both treatments. The dietary supplement of 5,6-DMB increased (P=0.02) apparent ruminal synthesis of CBL from 14.6 to 19.6 (s.e.m. 0.8) mg/day but had no effect (P>0.1) on apparent ruminal synthesis of the four analogs. The supplement of 5,6-DMB had no effect (P>0.1) on milk production and composition, or on protozoal count, ruminal pH and concentrations of volatile fatty acids and ammonia nitrogen in rumen content. The supplement had also no effect (P>0.1) on intake, omasal flow and apparent ruminal digestibility of dry matter, organic matter, NDF, ADF and nitrogenous fractions. Plasma concentration of CBL was not affected by treatments (P=0.98). Providing a preformed part of the CBL molecule, that is, 5,6-DMB, increased by 34% the apparent ruminal synthesis of CBL by ruminal bacteria but had no effect on ruminal fermentation or protozoa count and it was not sufficient to increase plasma concentrations of the vitamin. Even though the efficiency of cobalt utilization for apparent synthesis of CBL was increased from 2.0% to 2.7% by the 5,6-DMB supplement, this improved efficiency was still very low. Further research is needed to identify the factors affecting efficiency of utilization of cobalt for synthesis of CBL by the bacterial populations in rumen.  相似文献   

17.
Dynamics of ruminal ciliated protozoa in feedlot cattle.   总被引:1,自引:1,他引:0       下载免费PDF全文
G Towne  T G Nagaraja  R T Brandt  Jr    K E Kemp 《Applied microbiology》1990,56(10):3174-3178
Fluctuations in ciliated protozoan concentrations were monitored in 40 individually fed crossbred heifers that were stepped up to an 85% concentrate diet either slowly (12 days) or rapidly (3 days), with or without monensin (30 ppm). Ruminal fluid was withdrawn from all animals by stomach tube at the start of the study, after each group reached full feed, and at 14-day intervals thereafter throughout the finishing period until termination (day 119). Neither monensin nor speed of step-up affected (P greater than 0.10) total protozoan concentrations, ruminal pH, or lactic acid concentrations. Average protozoan concentrations peaked on day 5, progressively declined until day 56, and then increased (P less than 0.05), suggesting an adaptation to ruminal conditions. Concentrations of Isotricha spp. were higher (P less than 0.05) on the final two sampling dates than at any other time. After day 28, Entodinium, Isotricha, and Polyplastron were the only surviving genera. Protozoa were not detected in 11 heifers on day 42 and day 56, but only two animals were defaunated on day 119, indicating either exogenous or endogenous refaunation. Average protozoan concentrations were not different (P greater than 0.25) between ruminal samples collected by stomach tube the day before slaughter (2.8 x 10(5)/g) and digesta samples collected the next day (1.6 x 10(5)/g). In feedlot cattle, defaunation apparently is transitory and individual animals harbor a dynamic protozoan population that fluctuates in response to changing ruminal conditions.  相似文献   

18.
AIMS: To investigate interactions between rumen protozoa and Shiga toxin-producing Escherichia coli (STEC) and to ascertain whether it is likely that rumen protozoa act as ruminant hosts for STEC. METHODS AND RESULTS: The presence of stx genes in different microbial fractions recovered from cattle and sheep rumen contents and faeces was examined using PCR. In animals shedding faecal STEC, stx genes were not detected in the rumen bacterial or rumen protozoal fractions. Direct interactions between ruminal protozoa and STEC were investigated by in vitro co-incubation. Rumen protozoa did not appear to ingest STEC, a STEC lysogen or non-STEC E. coli populations when co-incubated. CONCLUSIONS: The ruminal environment is unlikely to be a preferred habitat for STEC. Bacterial grazing by rumen protozoa appears to have little, if any, effect on STEC populations. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates that ruminal protozoa are unlikely to be a major factor in the survival of STEC in ruminants. They appear as neither a host that protects STEC from the ruminal environment nor a predator that might reduce STEC numbers.  相似文献   

19.
SYNOPSIS. Six protozoa-free sheep, 3 fed alfalfa hay and 3 fed a concentrate diet, were inoculated with rumen contents from a steer fed the same alfalfa hay. All 24 species of protozoa in the inoculum became established in the sheep fed alfalfa hay, while only 9 species established in the sheep fed concentrate. Percentage species composition in the alfalfa-fed sheep was fairly similar to that of the inoculum. Rumen volumes of the alfalfa hay-fed sheep were significantly higher than those of the concentrate-fed sheep; however, fluid turnover rates were similar. Total protozoan numbers per ml of rumen contents were significantly higher in the concentrate-fed sheep, but after adjustment for rumen volume, there was no significant difference in the total number of protozoa in the rumen.  相似文献   

20.
SYNOPSIS Total numbers and distribution of genera, subgenera and species were determined for the ciliate protozoa in rumen contents of 4 Brazilian water buffalo Bubalus bubalis Linnaeus. The fauna of one animal, housed in close proximity to European and zebu-type cattle, differed considerably from that of the remaining animals, which were somewhat isolated on a large ranch. Several of the protozoan species observed in the semi-isolated animals were first described in rumen contents from humped Indian cattle, and their subsequent occurrence in other hosts and geographic locations has been limited or absent. In all, 49 different species of protozoa were found, 8 of which have not been previously described. Three of the new species belong to the genus Entodinium: E. ciculum sp. n., E. spinonucleatum sp. n. and E. triangulum sp. n.: 4 to Diplodinium (Ostracodinium): D. (O.) brazili sp. n., D. (O.) esalqum sp. n., D. (O.) nucleolobum sp. n., and D. (O.) tiete sp. n.; and one to Diplodinium (Eudiplodinium): D. (E.) bubalus sp. n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号