首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forward glutamate transport by the excitatory amino acid carrier EAAC1 is coupled to the inward movement of three Na(+) and one proton and the subsequent outward movement of one K(+) in a separate step. Based on indirect evidence, it was speculated that the cation binding sites bear a negative charge. However, little is known about the electrostatics of the transport process. Valences calculated using the Poisson-Boltzmann equation indicate that negative charge is transferred across the membrane when only one cation is bound. Consistently, transient currents were observed in response to voltage jumps when K(+) was the only cation on both sides of the membrane. Furthermore, rapid extracellular K(+) application to EAAC1 under single turnover conditions (K(+) inside) resulted in outward transient current. We propose a charge compensation mechanism, in which the C-terminal transport domain bears an overall negative charge of -1.23. Charge compensation, together with distribution of charge movement over many steps in the transport cycle, as well as defocusing of the membrane electric field, may be combined strategies used by Na(+)-coupled transporters to avoid prohibitive activation barriers for charge translocation.  相似文献   

2.
Substrate transport by the plasma membrane glutamate transporter EAAC1 is coupled to cotransport of three sodium ions. One of these Na(+) ions binds to the transporter already in the absence of glutamate. Here, we have investigated the possible involvement of two conserved aspartic acid residues in transmembrane segments 7 and 8 of EAAC1, Asp-367 and Asp-454, in Na(+) cotransport. To test the effect of charge neutralization mutations in these positions on Na(+) binding to the glutamate-free transporter, we recorded the Na(+)-induced anion leak current to determine the K(m) of EAAC1 for Na(+). For EAAC1(WT), this K(m) was determined as 120 mm. When the negative charge of Asp-367 was neutralized by mutagenesis to asparagine, Na(+) activated the anion leak current with a K(m) of about 2 m, indicating dramatically impaired Na(+) binding to the mutant transporter. In contrast, the Na(+) affinity of EAAC1(D454N) was virtually unchanged compared with the wild type transporter (K(m) = 90 mm). The reduced occupancy of the Na(+) binding site of EAAC1(D367N) resulted in a dramatic reduction in glutamate affinity (K(m) = 3.6 mm, 140 mm [Na(+)]), which could be partially overcome by increasing extracellular [Na(+)]. In addition to impairing Na(+) binding, the D367N mutation slowed glutamate transport, as shown by pre-steady-state kinetic analysis of transport currents, by strongly decreasing the rate of a reaction step associated with glutamate translocation. Our data are consistent with a model in which Asp-367, but not Asp-454, is involved in coordinating the bound Na(+) in the glutamate-free transporter form.  相似文献   

3.
Watzke N  Grewer C 《FEBS letters》2001,503(2-3):121-125
The steady-state and pre-steady-state kinetics of glutamate transport by the neuronal glutamate transporter EAAC1 were determined under conditions of outward glutamate transport and compared to those found for the inward transport mode. In both transport modes, the glutamate-induced current is composed of two components, the coupled transport current and the uncoupled anion current, and inhibited by a specific non-transportable inhibitor. Furthermore, the glutamate-independent leak current is observed in both transport modes. Upon a glutamate concentration jump outward transport currents show a distinct transient phase that deactivates within 15 ms. The results demonstrate that the general properties of EAAC1 are symmetric, but the rates of substrate transport and anion flux are asymmetric with respect to the orientation of the substrate binding site in the membrane. Therefore, the EAAC1 anion conductance differs from normal ligand-gated ion channels in that it can be activated by glutamate and Na(+) from both sides of the membrane.  相似文献   

4.
Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique that allows one to generate sub-millisecond glutamate concentration jumps to locate possible binding sites of the glutamate transporter for the cotransported proton. One candidate for this binding site, the highly conserved glutamic acid residue Glu-373 of EAAC1, was mutated to glutamine. Our results demonstrate that the mutant transporter does not catalyze net transport of glutamate, whereas Na(+)/glutamate homoexchange is unimpaired. Furthermore, the voltage dependence of the rates of Na(+) binding and glutamate translocation are unchanged compared with the wild-type. In contrast to the wild-type, however, homoexchange of the E373Q transporter is completely pH-independent. In line with these findings the transport kinetics of the mutant EAAC1 show no deuterium isotope effect. Thus, we suggest a new transport mechanism, in which Glu-373 forms part of the binding site of EAAC1 for the cotransported proton. In this model, protonation of Glu-373 is required for Na(+)/glutamate translocation, whereas the relocation of the carrier is only possible when Glu-373 is negatively charged. Interestingly, the Glu-373-homologous amino acid residue is glutamine in the related neutral amino acid transporter alanine-serine-cysteine transporter. The function of alanine-serine-cysteine transporter is neither potassium- nor proton-dependent. Consequently, our results emphasize the general importance of glutamate and aspartate residues for proton transport across membranes.  相似文献   

5.
Tao Z  Grewer C 《Biochemistry》2005,44(9):3466-3476
Transmembrane glutamate transport by the excitatory amino acid carrier (EAAC1) is coupled to the cotransport of three Na(+) ions and one proton. Previously, we suggested that the mechanism of H(+) cotransport involves protonation of the conserved glutamate residue E373. However, it was also speculated that the cotransported proton is shared in a H(+)-binding network, possibly involving the conserved histidine 295 in the sixth transmembrane domain of EAAC1. Here, we used site-directed mutagenesis together with pre-steady-state electrophysiological analysis of the mutant transporters to test the protonation state of H295 and to determine its involvement in proton transport by EAAC1. Our results show that replacement of H295 with glutamine, an amino acid residue that cannot be protonated, generates a fully functional transporter with transport kinetics that are close to those of the wild-type EAAC1. In contrast, replacement with lysine results in a transporter in which substrate binding and translocation are dramatically inhibited. Furthermore, it is demonstrated that the effect of the histidine 295 to lysine mutation on the glutamate affinity is caused by its positive charge, since wild-type-like affinity can be restored by changing the extracellular pH to 10.0, thus partially deprotonating H295K. Together, these results suggest that histidine 295 is not protonated in EAAC1 at physiological pH and, thus, does not contribute to H(+) cotransport. This conclusion is supported by data from H295C-E373C double mutant transporters which demonstrate that these residues cannot be linked by oxidation, indicating that H295 and E373 are not close in space and do not form a proton binding network. A kinetic scheme is used to quantify the results, which includes binding of the cotransported proton to E373 and binding of a modulatory, nontransported proton to the amino acid side chain in position 295.  相似文献   

6.
The neuronal glutamate transporter EAAC1 contains several conserved acidic amino acids in its transmembrane domain, which are possibly important in catalyzing transport and/or binding of co/countertransported cations. Here, we have studied the effects of neutralization by site-directed mutagenesis of three of these amino acid side chains, glutamate 373, aspartate 439, and aspartate 454, on the functional properties of the transporter. Transport was analyzed by whole-cell current recording from EAAC1-expressing mammalian cells after applying jumps in voltage, substrate, or cation concentration. Neutralization mutations in positions 373 and 454, although eliminating steady-state glutamate transport, have little effect on the kinetics and thermodynamics of Na(+) and glutamate binding, suggesting that these two positions do not constitute the sites of Na(+) and glutamate association with EAAC1. In contrast, the D439N mutation resulted in an approximately 10-fold decrease of apparent affinity of the glutamate-bound transporter form for Na(+), and an approximately 2,000-fold reduction in the rate of Na(+) binding, whereas the kinetics and thermodynamics of Na(+) binding to the glutamate-free transporter were almost unchanged compared to EAAC1(WT). Furthermore, the D439N mutation converted l-glutamate, THA, and PDC, which are activating substrates for the wild-type anion conductance, but not l-aspartate, into transient inhibitors of the EAAC1(D439) anion conductance. Activation of the anion conductance by l-glutamate was biphasic, allowing us to directly analyze binding of two of the three cotransported Na(+) ions as a function of time and [Na(+)]. The data can be explained with a model in which the D439N mutation results in a dramatic slowing of Na(+) binding and a reduced affinity of the substrate-bound EAAC1 for Na(+). We propose that the bound substrate controls the rate and the extent of Na(+) interaction with the transporter, depending on the amino acid side chain in position 439.  相似文献   

7.
Tao Z  Gameiro A  Grewer C 《Biochemistry》2008,47(48):12923-12930
The excitatory amino acid carrier EAAC1 belongs to a family of glutamate transporters that use the electrochemical transmembrane gradients of sodium and potassium to mediate uphill transport of glutamate into the cell. While the sites of cation interaction with EAAC1 are unknown, two cation binding sites were observed in the crystal structure of the bacterial glutamate transporter homologue GltPh. Although occupied by Tl(+) in the crystal structure, these sites were proposed to be Na(+) binding sites. Therefore, we tested whether Tl(+) has the ability to replace Na(+) also in the mammalian transporters. Our data demonstrate that Tl(+) can bind to EAAC1 with high affinity and mediate a host of different functions. Tl(+) can functionally replace potassium when applied to the cytoplasm and can support glutamate transport current. When applied extracellularly, Tl(+) induces some behavior that mimics that of the Na(+)-bound transporter, such as activation of the cation-induced anion conductance and creation of a substrate binding site, but it cannot replace Na(+) in supporting glutamate transport current. Moreover, our data show a differential effect of mutations to two acidic amino acids potentially involved in cation binding (D367 and D454) on Na(+) and Tl(+) affinity. Overall, our results demonstrate that the ability of the glutamate transporters to interact with Tl(+) is conserved between GltPh and a mammalian member of the transporter family. However, in contrast to GltPh, which does not bind K(+), Tl(+) is more efficient in mimicking K(+) than Na(+) when interacting with the mammalian protein.  相似文献   

8.
The ion-trap technique is an experimental approach allowing measurement of changes in ionic concentrations within a restricted space (the trap) comprised of a large-diameter ion-selective electrode apposed to a voltage-clamped Xenopus laevis oocyte. The technique is demonstrated with oocytes expressing the Na(+)/glucose cotransporter (SGLT1) using Na(+)- and H(+)-selective electrodes and with the electroneutral H(+)/monocarboxylate transporter (MCT1). In SGLT1-expressing oocytes, bath substrate diffused into the trap within 20 s, stimulating Na(+)/glucose influx, which generated a measurable decrease in the trap Na(+) concentration ([Na(+)](T)) by 0.080 +/- 0.009 mM. Membrane hyperpolarization produced a further decrease in [Na(+)](T), which was proportional to the increased cotransport current. In a Na(+)-free, weakly buffered solution (pH 5.5), H(+) drives glucose transport through SGLT1, and this was monitored with a H(+)-selective electrode. Proton movements can also be clearly detected on adding lactate to an oocyte expressing MCT1 (pH 6.5). For SGLT1, time-dependent changes in [Na(+)](T) or [H(+)](T) were also detected during a membrane potential pulse (150 ms) in the presence of substrate. In the absence of substrate, hyperpolarization triggered rapid reorientation of SGLT1 cation binding sites, accompanied by cation capture from the trap. The resulting change in [Na(+)](T) or [H(+)](T) is proportional to the pre-steady-state charge movement. The ion-trap technique can thus be used to measure steady-state and pre-steady-state transport activities and provides new opportunities for studying electrogenic and electroneutral ion transport mechanisms.  相似文献   

9.
Glutamate transporters are essential for terminating synaptic transmission. Glutamate is translocated together with three sodium ions. In the neuronal glutamate transporter EAAC1, lithium can replace sodium. To address the question of whether the coupling ion interacts with the 'driven' substrate during co-transport, the kinetic parameters of transport of the three substrates, L-glutamate and D- and L-aspartate by EAAC-1 in sodium- and lithium-containing media were compared. The major effect of the substitution of sodium by lithium was on Km. In the presence of sodium, the values for Km and Imax of these substrates were similar. In the presence of lithium, the Km for L-aspartate was increased around 13-fold. Remarkably, the corresponding increase for L-glutamate and D-aspartate was much larger, around 130-fold. In marked contrast, the Ki values for a non-transportable substrate analogue were similar in the presence of either sodium or lithium. The preference for L-aspartate in the presence of lithium was also observed when electrogenic transport of radioactive substrates was monitored in EAAC1-containing proteoliposomes. Our results indicate that, subsequent to substrate binding, the co-transported solutes interact functionally in the binding pocket of the transporter.  相似文献   

10.
In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.  相似文献   

11.
We have investigated the functional role of Cl(-) in the human Na(+)/Cl(-)/gamma-aminobutyric acid (GABA) and Na(+)/glucose cotransporters (GAT1 and SGLT1, respectively) expressed in Xenopus laevis oocytes. Substrate-evoked steady-state inward currents were examined in the presence and absence of external Cl(-). Replacement of Cl(-) by gluconate or 2-(N-morpholino)ethanesulfonic acid decreased the apparent affinity of GAT1 and SGLT1 for Na(+) and the organic substrate. In the absence of substrate, GAT1 and SGLT1 exhibited charge movements that manifested as pre-steady-state current transients. Removal of Cl(-) shifted the voltage dependence of charge movements to more negative potentials, with apparent affinity constants (K(0.5)) for Cl(-) of 21 and 115 mm for SGLT1 and GAT1, respectively. The maximum charge moved and the apparent valence were not altered. GAT1 stoichiometry was determined by measuring GABA-evoked currents and the unidirectional influx of (36)Cl(-), (22)Na(+), or [(3)H]GABA. Uptake of each GABA molecule was accompanied by inward movement of 2 positive charges, which was entirely accounted for by the influx of Na(+) in the presence or absence of Cl(-). Thus, the GAT1 stoichiometry was 2Na(+):1GABA. However, Cl(-) was transported by GAT1 because the inward movement of 2 positive charges was accompanied by the influx of one Cl(-) ion, suggesting unidirectional influx of 2Na(+):1Cl(-):1GABA per transport cycle. Activation of forward Na(+)/Cl(-)/GABA transport evoked (36)Cl(-) efflux and was blocked by the inhibitor SKF 89976A. These data suggest a Cl(-)/Cl(-) exchange mechanism during the GAT1 transport cycle. In contrast, Cl(-) was not transported by SGLT1. Thus, in both GAT1 and SGLT1, Cl(-) modulates the kinetics of cotransport by altering Na(+) affinity, but does not contribute to net charge transported per transport cycle. We conclude that Cl(-) dependence per se is not a useful criterion to classify Na(+) cotransporters.  相似文献   

12.
Uptake of glutamate from the synaptic cleft is mediated by high affinity transporters and is driven by Na(+), K(+), and H(+) concentration gradients across the membrane. Here, we characterize the molecular mechanism of the intracellular pH change associated with glutamate transport by combining current recordings from excitatory amino acid carrier 1 (EAAC1)-expressing HEK293 cells with a rapid kinetic technique with a 100-micros time resolution. Under conditions of steady state transport, the affinity of EAAC1 for glutamate in both the forward and reverse modes is strongly dependent on the pH on the cis-side of the membrane, whereas the currents at saturating glutamate concentrations are hardly affected by the pH. Consistent with this, the kinetics of the pre-steady state currents, measured after saturating glutamate concentration jumps, are not a function of the pH. In addition, we determined the deuterium isotope effect on EAAC1 kinetics, which is in agreement with proton cotransport but not OH(-) countertransport. The results can be quantitatively explained with an ordered binding model that includes a rapid proton binding step to the empty transporter followed by glutamate binding and translocation of the proton-glutamate-transporter complex. The apparent pK of the extracellular proton binding site is approximately 8. This value is shifted to approximately 6.5 when the substrate binding site is exposed to the cytoplasm.  相似文献   

13.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

14.
Electrogenic events associated with the activity of the melibiose permease (MelB), a transporter from Escherichia coli, were investigated. Proteoliposomes containing purified MelB were adsorbed to a solid supported lipid membrane, activated by a substrate concentration jump, and transient currents were measured. When the transporter was preincubated with Na(+) at saturating concentrations, a charge translocation in the protein upon melibiose binding could still be observed. This result demonstrates that binding of the uncharged substrate melibiose triggers a charge displacement in the protein. Further analysis showed that the charge displacement is neither related to extra Na(+) binding to the transporter, nor to the displacement of already bound Na(+) within the transporter. The electrogenic melibiose binding process is explained by a conformational change with concomitant displacement of charged amino acid side chains and/or a reorientation of helix dipoles. A kinetic model is suggested, in which Na(+) and melibiose binding are distinct electrogenic processes associated with approximately the same charge displacement. These binding reactions are fast in the presence of the respective cosubstrate (k > 50 s(-1)).  相似文献   

15.
Glutamate and monoamine transporters: new visions of form and function   总被引:4,自引:0,他引:4  
Neurotransmitters are rapidly removed from the extracellular space primarily through the actions of plasma membrane transporters. This uptake process is not only essential in the termination of neurotransmission but also serves to replenish intracellular levels of transmitter for further release. Neurotransmitter transporters couple the inward movement of substrate to the movement of Na(+) down a concentration gradient and, in addition to their transport function, some carriers also display channel-like activities. Five Na(+)/K(+)-dependent glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family and a second family, SLC6, encompasses the Na(+)/Cl(-)-dependent transporters for dopamine, 5-hydroxytryptamine (serotonin), noradrenaline, GABA and glycine. Recent advances, including high-resolution structures from both families, are now providing new insights into the molecular determinants that contribute to substrate translocation and ion channel activities. Other influential studies have explored how cellular regulatory mechanisms modulate transporter function, and how the different functions of the carrier shape the patterns of neurotransmitter signaling. This review focuses on recent studies of glutamate and monoamine transporters as prototypes of the two carrier families.  相似文献   

16.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.  相似文献   

17.
Transporters of the major excitatory neurotransmitter glutamate play a crucial role in glutamatergic neurotransmission by removing their substrate from the synaptic cleft. The transport mechanism involves co-transport of glutamic acid with three Na(+) ions followed by countertransport of one K(+) ion. Structural work on the archeal homologue Glt(Ph) indicates a role of a conserved asparagine in substrate binding. According to a recent proposal, this residue may also participate in a novel Na(+) binding site. In this study, we characterize mutants of this residue from the neuronal transporter EAAC1, Asn-451. None of the mutants, except for N451S, were able to exhibit transport. However, the K(m) of this mutant for l-aspartate was increased ~30-fold. Remarkably, the increase for d-aspartate and l-glutamate was 250- and 400-fold, respectively. Moreover, the cation specificity of N451S was altered because sodium but not lithium could support transport. A similar change in cation specificity was observed with a mutant of a conserved threonine residue, T370S, also implicated to participate in the novel Na(+) site together with the bound substrate. In further contrast to the wild type transporter, only l-aspartate was able to activate the uncoupled anion conductance by N451S, but with an almost 1000-fold reduction in apparent affinity. Our results not only provide experimental support for the Na(+) site but also suggest a distinct orientation of the substrate in the binding pocket during the activation of the anion conductance.  相似文献   

18.
Charge translocation associated with the activity of the Na(+)/proline cotransporter PutP of Escherichia coli was analyzed for the first time. Using a rapid solution exchange technique combined with a solid-supported membrane (SSM), it was demonstrated that Na(+)and/or proline individually or together induce a displacement of charge. This was assigned to an electrogenic Na(+)and/or proline binding process at the cytoplasmic face of the enzyme with a rate constant of k>50s(-1) which preceeds the rate-limiting step. Based on the kinetic analysis of our electrical signals, the following characteristics are proposed for substrate binding in PutP. (1) Substrate binding is electrogenic not only for Na(+), but also for the uncharged cosubstrate proline. The charge displacement associated with the binding of both substrates is of comparable size and independent of the presence of the respective cosubstrate. (2) Both substrates can bind individually to the transporter. Under physiological conditions, an ordered binding mechanism prevails, while at sufficiently high concentrations, each substrate can bind in the absence of the other. (3) Both substrate binding sites interact cooperatively with each other by increasing the affinity and/or the speed of binding of the respective cosubstrate. (4) Proline binding proceeds in a two-step process: low affinity (approximately 1mM) electroneutral substrate binding followed by a nearly irreversible electrogenic conformational transition.  相似文献   

19.
Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+) ions, one H(+) and the counter-transport of one K(+) ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph), whose three dimensional structure is known is also coupled to three Na(+) ions but only two Na(+) ion binding sites have been observed in the crystal structure of Glt(Ph). In order to fully utilize the Glt(Ph) structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of Glt(Ph) and accurately determine the number and location of Na(+) ions coupled to transport. Several sites have been proposed for the binding of a third Na(+) ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for Glt(Ph) and reveal a new site for the third Na(+) ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in Glt(Ph), and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na(+) compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na(+) ion in Glt(Ph) and EAAT1.  相似文献   

20.
Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 μs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na(+)-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号