首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3–H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three his-tone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3–H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3–H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.Key words: Gen5, Rtt109, chromatin, nucleosome assembly, genome integrity  相似文献   

2.
DNA damage causes checkpoint activation leading to cell cycle arrest and repair, during which the chromatin structure is disrupted. The mechanisms whereby chromatin structure and cell cycle progression are restored after DNA repair are largely unknown. We show that chromatin reassembly following double-strand break (DSB) repair requires the histone chaperone Asf1 and that absence of Asf1 causes cell death, as cells are unable to recover from the DNA damage checkpoint. We find that Asf1 contributes toward chromatin assembly after DSB repair by promoting acetylation of free histone H3 on lysine 56 (K56) via the histone acetyl transferase Rtt109. Mimicking acetylation of K56 bypasses the requirement for Asf1 for chromatin reassembly and checkpoint recovery, whereas mutations that prevent K56 acetylation block chromatin reassembly after repair. These results indicate that restoration of the chromatin following DSB repair is driven by acetylated H3 K56 and that this is a signal for the completion of repair.  相似文献   

3.
4.
5.
The coordinated process of DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3-H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3-H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.  相似文献   

6.
Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27, and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ~12?? diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in?vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in?vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3-H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones before deposition.  相似文献   

7.
8.
In fungal species, lysine 56 of newly synthesized histone H3 molecules is modified by the acetyltransferase Rtt109, which promotes resistance to genotoxic agents. To further explore how H3 K56ac contributes to genome stability, we conducted screens for suppressors of the DNA damage sensitivity of budding yeast rtt109Δ mutants. We recovered a single extragenic suppressor mutation that efficiently restored damage resistance. The suppressor is a point mutation in the histone H3 gene HHT2, and converts lysine 56 to glutamic acid. In some ways, K56E mimics K56ac, because it suppresses other mutations that interfere with the production of H3 K56ac and restores histone binding to chromatin assembly proteins CAF-1 and Rtt106. Therefore, we demonstrate that enhanced association with chromatin assembly factors can be accomplished not only by acetylation-mediated charge neutralization of H3K56 but also by the replacement of the positively charged lysine with an acidic residue. These data suggest that removal of the positive charge on lysine 56 is the functionally important consequence of H3K56 acetylation. Additionally, the suppressive function of K56E requires the presence of a second H3 allele, because K56E impairs growth when it is the sole source of histones, even more so than does constitutive H3K56 acetylation. Our studies therefore emphasize how H3 K56ac not only promotes chromatin assembly but also leads to chromosomal malfunction if not removed following histone deposition.  相似文献   

9.
The histone chaperone Asf1p mediates global chromatin disassembly in vivo   总被引:1,自引:0,他引:1  
The packaging of the eukaryotic genome into chromatin is likely to be mediated by chromatin assembly factors, including histone chaperones. We investigated the function of the histone H3/H4 chaperones anti-silencing function 1 (Asf1p) and chromatin assembly factor 1 (CAF-1) in vivo. Analysis of chromatin structure by accessibility to micrococcal nuclease and DNase I digestion demonstrated that the chromatin from CAF-1 mutant yeast has increased accessibility to these enzymes. In agreement, the supercoiling of the endogenous 2mu plasmid is reduced in yeast lacking CAF-1. These results indicate that CAF-1 mutant yeast globally under-assemble their genome into chromatin, consistent with a role for CAF-1 in chromatin assembly in vivo. By contrast, asf1 mutants globally over-assemble their genome into chromatin, as suggested by decreased accessibility of their chromatin to micrococcal nuclease and DNase I digestion and increased supercoiling of the endogenous 2mu plasmid. Deletion of ASF1 causes a striking loss of acetylation on histone H3 lysine 9, but this is not responsible for the altered chromatin structure in asf1 mutants. These data indicate that Asf1p may have a global role in chromatin disassembly and an unexpected role in histone acetylation in vivo.  相似文献   

10.
Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a twofold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Δhst4Δ double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Δ cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Δ cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage.  相似文献   

11.
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis.  相似文献   

12.
Chromatin is disassembled and reassembled during DNA repair. To assay chromatin reassembly accompanying DNA double strand break repair, ChIP analysis can be used to monitor the presence of histone H3 near the lesion. The chromatin assembly factor Asf1p, as well as the acetylation of histone H3 lysine 56, have been shown to promote chromatin reassembly when DNA double strand break repair is complete. Using Gal-HO-mediated double strand break repair, we have tested each of the components of the nuclear Hat1p-containing type B histone acetyltransferase complex (NuB4) and have found that they can affect repair-linked chromatin reassembly but that their contributions are not equivalent. In particular, deletion of the catalytic subunit, Hat1p, caused a significant defect in chromatin reassembly. In addition, loss of the histone chaperone Hif1p, when combined with an allele of H3 that mutates lysines 14 and 23 to arginine, has a pronounced effect on chromatin reassembly that is similar to that observed in an asf1Δ. The role of Hat1p and Hif1p is at least partially redundant with the role of Asf1p. Consistent with a more prominent role for Hif1p in chromatin reassembly than either Hat1p or Hat2p, Hif1p exists in complex(es) independent of Hat1p and Hat2p and influences the activity of an H3-specific histone acetyltransferase activity. Our data directly demonstrate the role of the nuclear HAT1 complex (NuB4) components in DNA repair-linked chromatin reassembly.  相似文献   

13.
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.  相似文献   

14.
15.
16.
Li Q  Zhou H  Wurtele H  Davies B  Horazdovsky B  Verreault A  Zhang Z 《Cell》2008,134(2):244-255
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.  相似文献   

17.
In Saccharomyces cerevisiae, Rtt109, a lysine acetyltransferase (KAT), associates with a histone chaperone, either Vps75 or Asf1. It has been proposed that these chaperones alter the selectivity of Rtt109 or which residues it preferentially acetylates. In the present study, we utilized a label-free quantitative mass spectrometry-based method to determine the steady-state kinetic parameters of acetylation catalyzed by Rtt109-Vps75 on H3 monomer, H3/H4 tetramer, and H3/H4-Asf1 complex. These results show that among these histone conformations, only H3K9 and H3K23 are significantly acetylated under steady-state conditions and that Asf1 promotes H3/H4 acetylation by Rtt109-Vps75. Asf1 equally increases the Rtt109-Vps75 specificity for both of these residues with a maximum stoichiometry of 1:1 (Asf1 to H3/H4), but does not alter the selectivity between these two residues. These data suggest that the H3/H4-Asf1 complex is a substrate for Rtt109-Vps75 without altering selectivity between residues. The deletion of either Rtt109 or Asf1 in vivo results in the same reduction of H3K9 acetylation, suggesting that Asf1 is required for efficient H3K9 acetylation both in vitro and in vivo. Furthermore, we found that the acetylation preference of Rtt109-Vps75 could be directed to H3K56 when those histones already possess modifications, such as those found on histones purified from chicken erythrocytes. Taken together, Vps75 and Asf1 both enhance Rtt109 acetylation for H3/H4, although via different mechanisms, but have little impact on the residue selectivity. Importantly, these results provide evidence that histone chaperones can work together via interactions with either the enzyme or the substrate to more efficiently acetylate histones.  相似文献   

18.
Chromatin assembly mutants accumulate recombinogenic DNA damage and are sensitive to genotoxic agents. Here we have analyzed why impairment of the H3K56 acetylation-dependent CAF1 and Rtt106 chromatin assembly pathways, which have redundant roles in H3/H4 deposition during DNA replication, leads to genetic instability. We show that the absence of H3K56 acetylation or the simultaneous knock out of CAF1 and Rtt106 increases homologous recombination by affecting the integrity of advancing replication forks, while they have a minor effect on stalled replication fork stability in response to the replication inhibitor hydroxyurea. This defect in replication fork integrity is not due to defective checkpoints. In contrast, H3K56 acetylation protects against replicative DNA damaging agents by DNA repair/tolerance mechanisms that do not require CAF1/Rtt106 and are likely subsequent to the process of replication-coupled nucleosome deposition. We propose that the tight connection between DNA synthesis and histone deposition during DNA replication mediated by H3K56ac/CAF1/Rtt106 provides a mechanism for the stabilization of advancing replication forks and the maintenance of genome integrity, while H3K56 acetylation has an additional, CAF1/Rtt106-independent function in the response to replicative DNA damage.  相似文献   

19.
Miller A  Yang B  Foster T  Kirchmaier AL 《Genetics》2008,179(2):793-809
The formation and stability of epigenetically regulated chromatin is influenced by DNA replication and factors that modulate post-translational modifications on histones. Here we describe evidence that PCNA can affect silencing in Saccharomyces cerevisiae by facilitating deposition of H3 K56ac onto chromosomes. We propose that PCNA participates in this process through a pathway that includes replication factor C, the chromatin assembly factor Asf1p, and the K56-specific acetyltransferase Rtt109p. We show that mutation of POL30 or loss of K56-acetylation in rtt109 and histone H3 mutants enhances silencing at the crippled HMR locus HMRae via restoring Sir binding and that pol30 mutants with silencing phenotypes have reduced levels of H3 K56ac. Although loss of acetylation on H3 K56 was generally compatible with silencing, mutations at this residue also led to defects in silencing an ADE2 reporter at HMR and abolished silencing when combined with cac1 or pol30-8. These silencing phenotypes are analogous to those in asf1 mutants or pol30-6 and pol30-79 mutants with defects in ASF1-dependent pathways. On the basis of these findings, we propose that mutations in DNA replication factors alter acetylation of H3 K56. We show that this defect, in turn, contributes to misregulation of epigenetic processes as well as of cellular responses to DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号