首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protea-associated fungi are dispersed between flower heads by mites, beetles and possibly birds. For the ophiostomatoid fungus, Knoxdaviesia proteae, these vectors offer regular dispersal between distant floral hosts. Unlike K. proteae, Knoxdaviesia capensis occupies multiple Protea host species. In this study, we aimed to determine whether the generalist K. capensis shares the long-distance dispersal pattern with specialist K. proteae and whether it moves freely between different host species. We evaluated the genetic structure of K. capensis from five populations of a wide-spread host and between sympatric hosts. Twelve K. capensis-specific microsatellite markers were developed and applied to 90 individuals. K. capensis showed high genetic diversity and almost maximal genotypic diversity. All populations were poorly differentiated, indicating the presence of long-distance dispersal. No differentiation could be detected between sympatric host populations, suggesting free dispersal between different hosts. This implies that the beetle and bird vectors that pollinate Protea species show the same non-specific movement.  相似文献   

2.
Genome comparisons of species with distinctive ecological traits can elucidate genetic divergence that influenced their differentiation. The interaction of a microorganism with its biotic environment is largely regulated by secreted compounds, and these can be predicted from genome sequences. In this study, we considered Knoxdaviesia capensis and Knoxdaviesia proteae, two closely related saprotrophic fungi found exclusively in Protea plants. We investigated their genome structure to compare their potential inter-specific interactions based on gene content. Their genomes displayed macrosynteny and were approximately 10 % repetitive. Both species had fewer secreted proteins than pathogens and other saprotrophs, reflecting their specialized habitat. The bulk of the predicted species-specific and secreted proteins coded for carbohydrate metabolism, with a slightly higher number of unique carbohydrate-degrading proteins in the broad host-range K. capensis. These fungi have few secondary metabolite gene clusters, suggesting minimal competition with other microbes and symbiosis with antibiotic-producing bacteria common in this niche. Secreted proteins associated with detoxification and iron sequestration likely enable these Knoxdaviesia species to tolerate antifungal compounds and compete for resources, facilitating their unusual dominance. This study confirms the genetic cohesion between Protea-associated Knoxdaviesia species and reveals aspects of their ecology that have likely evolved in response to their specialist niche.  相似文献   

3.
The ability of soil-living oribatid mites to disperse fungal propagules on their bodies was investigated. Classical plating methods were applied to cultivate these fungi and to study their morphology. Molecular markers were used for further determination. The nuclear ribosomal large subunit and the nuclear ribosomal internal transcribed spacer of DNA extracts of the cultured fungi as well as total DNA extracts of the mites themselves, also containing fungal DNA, were amplified and sequenced. Based on phylogenetic analysis, a total of 31 fungal species from major fungal groups were found to be associated with oribatid mites, indicating that mites do not selectively disperse specific species or species groups. The detected taxa were mainly saprobiontic, cosmopolitan (e.g., Alternaria tenuissima), but also parasitic fungi (Beauveria bassiana) for whose dispersal oribatid mites might play an important role. In contrast, no mycorrhizal fungi were detected in association with oribatid mites, indicating that their propagules are dispersed in a different way. In addition, fungi that are known to be a preferred food for oribatid mites such as the Dematiacea were not detected in high numbers. Results of this study point to the potential of oribatid mites to disperse fungal taxa in soil and indicate that co-evolutionary patterns between oribatid mites and their associated fungi might be rare or even missing in most cases, since we only detected ubiquitous taxa attached to the mites.  相似文献   

4.
Knoxdaviesia proteae is one of the first native ophiostomatoid fungi discovered in South Africa, where it consistently occurs in the infructescences of the iconic Cape Biome plant, Protea repens. Although numerous studies have been undertaken to better understand the ecology of K. proteae, many questions remain to be answered, particularly given its unique niche and association with arthropods for dispersal. We describe the development and distribution of microsatellite markers in K. proteae through Interspersed Simple Sequence Repeat-Polymerase Chain Reaction (ISSR-PCR) enrichment and pyrosequencing. A large proportion of the 31492 sequences obtained from sequencing the enriched genomic DNA were characterised by microsatellites consisting of short tandem repeats and di- and tri-nucleotide motifs. Seventeen percent of these microsatellites contained flanking regions sufficient for primer design. Twenty-three primer pairs were tested, of which 12 amplified and 10 generated polymorphic fragments in K. proteae. Half of these could be transferred to the sister species, K. capensis. The developed markers will be used to investigate the reproductive system, genetic diversity and dispersal strategies of K. proteae.  相似文献   

5.
Actinomycete bacteria have previously been reported from reproductive structures (infructescences) of Protea (sugarbush/suikerbos) species, a niche dominated by fungi in the genera Knoxdaviesia and Sporothrix. It is probable that these taxa have symbiotic interactions, but a lack of knowledge regarding their diversity and general ecology precludes their study. We determined the diversity of actinomycetes within Protea repens inflorescence buds, open inflorescences, young and mature infructescences, and leaf litter surrounding these trees. Since the P. repens habitat is fire-prone, we also considered the potential of these bacteria to recolonise infructescences after fire. Actinomycetes were largely absent from flower buds and inflorescences but were consistently present in young and mature infructescences. Two Streptomyces spp. were the most consistent taxa recovered, one of which was also routinely isolated from leaf litter. Lower colonisation rates were evident in samples from a recently burnt site. One of the most consistent taxa isolated from older trees in the unburnt site was absent from this site. Our findings show that P. repens has a distinct community of actinomycetes dominated by a few species. These communities change over time and infructescence developmental stage, season and the age of the host population. Mature infructescences appear to be important sources of inoculum for some of the actinomycetes, seemingly disrupted by fire. Increased fire frequency limiting maturation of P. repens infructescences could thus impact future actinomycete colonisation in the landscape. Streptomyces spp. are likely to share this niche with the ophiostomatoid fungi, which merits further study regarding their interactions and mode of transfer.  相似文献   

6.
《Fungal biology》2022,126(2):122-131
Sporothrix and Knoxdaviesia fungi use pollinators to colonize Protea flowers at anthesis. These saprobes remain dominant in the nutrient-rich, fire-retardant Protea seed-cones (infructescences) for at least a year after flowering. We tested the hypothesis that they competitively exclude potentially detrimental fungi from infructescences during this time. We compared seed set and longevity of infructescences containing Sporothrix and Knoxdaviesia vs. those that contain ‘contaminant’ saprobes. Hereafter we evaluated their competitive abilities against the ‘contaminant’ saprobes. Infructescences devoid of Sporothrix and Knoxdaviesia were dominated by Penicillium cf. toxicarium, Cladosporium cf. cladosporoides and Fusarium cf. anthophilum. Sporothrix and Knoxdaviesia presence did not affect seed viability, but infructescences persisted longer than those colonised by ‘contaminant’ fungi. The ‘contaminant’ species were stronger competitors than Sporothrix and Knoxdaviesia. However, Sporothrix and Knoxdaviesia could defend captured space well against ‘contaminant’ species. This effect was enhanced when fungal taxa grew on media prepared from their usual Protea host species, clarifying their dominance and host consistency observed in the field. Sporothrix and Knoxdaviesia from Protea are therefore weak competitors against common saprobes, especially when growing on alternative hosts, and need to colonise flowers very early (before colonization by other fungi) to dominate in this environment. They may delay seed release from infructescences longer than if these are colonised by other saprobes, increasing chances of seed release to occur after fire, when conditions are more favourable for Protea recruitment.  相似文献   

7.
We isolated ophiostomatoid fungi from bark beetles infesting Pinus densiflora and their galleries at 24 sites in Japan. Twenty-one ophiostomatoid fungi, including species of Ophiostoma, Grosmannia, Ceratocystiopsis, Leptographium, and Pesotum, were identified. Among these, 11 species were either newly recorded in Japan or were previously undescribed species. Some of these fungal species were isolated from several bark beetles, but other species were isolated from only a particular beetle species. Thus, it is suggested that some ophiostomatoid fungi have specific relationships with particular beetle species. In addition, fungus-beetle biplots from redundancy analysis (RDA) summarizing the effects of beetle ecological characteristics suggested that the association patterns between bark beetles and the associated fungi seemed to be related to the niches occupied by the beetles.  相似文献   

8.
The Cape Floristic Region (CFR) displays high levels of plant diversity and endemism, and has received focused botanical systematic attention. In contrast, fungal diversity patterns and co-evolutionary processes in this region have barely been investigated. Here we reconstruct molecular phylogenies using the ITS and beta-tubulin gene regions of the ophiostomatoid fungi Gondwanamyces and Ophiostoma associated with southern African Protea species. Results indicate that they evolved in close association with Protea. In contrast to Protea, Ophiostoma species migrated to the CFR from tropical and subtropical Africa, where they underwent subsequent radiation. In both Gondwanamyces and Ophiostoma vector arthropods probably facilitated long-distance migration and shorter-distance dispersal. Although ecological parameters shaped most associations between ophiostomatoid fungi and Protea, there is congruence between fungal-host-associations and the systematic classification of Protea. These results confirm that the entire biotic environment must be considered in order to understand diversity and evolution in the CFR as a whole.  相似文献   

9.
10.
Many bark beetles live in a symbiosis with ophiostomatoid fungi but very little is known regarding these fungi in Spain. In this study, we considered the fungi associated with nine bark beetle species and one weevil infesting two native tree species (Pinus sylvestris and Pinus nigra) and one non-native (Pinus radiata) in Cantabria (Northern Spain). This included examination of 239 bark beetles or their galleries. Isolations yielded a total of 110 cultures that included 11 fungal species (five species of Leptographium sensu lato including Leptographium absconditum sp. nov., five species of Ophiostoma sensu lato including Ophiostoma cantabriense sp. nov, and one species of Graphilbum). The most commonly encountered fungal associates of the bark beetles were Grosmannia olivacea, Leptographium procerum, and Ophiostoma canum. The aggressiveness of the collected fungal species was evaluated using inoculations on two-year-old P. radiata seedlings. Leptographium wingfieldii, Leptographium guttulatum, and Ophiostoma ips were the only species capable of causing significant lesions.  相似文献   

11.
A phenotype is the expression of interactions between species genotype and environment. We quantified the contributions of ecological and phylogenetic associations to phenotypic variation in Geosmithia fungi. Geosmithia are symbiotic beetle-associated saprotrophs with a range of life histories and host specificities, including obligate nutritional beetle mutualists (ambrosia fungi) and phytopathogens. We hypothesized that: (1) species phenotypes are better explained by their ecology than by their phylogenetic relationships; (2) niche specialization was accompanied by enzymatic capability losses; and (3) ambrosia Geosmithia species have higher nutritional quality and antibiotic capabilities than species with facultative symbioses. Our results confirmed that long-term co-evolved specialists have reduced metabolic breadth in comparison to generalists. Phytopathogenic G. morbida produces unique enzyme suites with affinity to ligno-cellulose. Mycelia of ambrosia fungi contain large amounts of oleic fatty acid with nutritive and possibly allelopathic function. Overall, our results indicate that Geosmithia ecology have greater effect on species phenotype than their phylogenetic relationships.  相似文献   

12.
Most wood-inhabiting fungi are assumed to be dispersed primarily by wind, with the exception of a few species involved in mutualistic relationships with insects. In this study we tested whether several species of wood-inhabiting insects can function as dispersal vectors for non-mutualistic fungi, which would indicate that wood-inhabiting fungi can benefit from targeted animal-mediated dispersal. We sampled wood-inhabiting beetles (Coleoptera) from freshly felled wood experimentally added to forests and used DNA metabarcoding to investigate the fungal DNA carried by these insects. Staphylinid beetles rarely contained fungal DNA, while Endomychus coccineus, Glischrochilus hortensis and Glischrochilus quadripunctatus frequently carried fungal DNA with a composition specific to the insect taxon. A large proportion of the obtained fungal sequences (34%) represented decomposer fungi, including well-known wood-decay fungi such as Fomitopsis pinicola, Fomes fomentarius, Trichaptum abietinum and Trametes versicolor. Scanning electron microscopy further showed that some of the fungal material was carried as spores or yeast cells on the insect exoskeletons. Our results suggest that insect-vectored dispersal is of broader importance to wood-inhabiting fungi than previously assumed.  相似文献   

13.
《Fungal biology》2014,118(5-6):472-483
Bark and ambrosia beetles are ecologically and economically important phloeophagous insects that often have complex symbiotic relationships with fungi and mites. These systems are greatly understudied in Africa. In the present study we identified bark and ambrosia beetles, their phoretic mites and their main fungal associates from native Virgilia trees in the Cape Floristic Region (CFR) of South Africa. In addition, we tested the ability of mites to feed on the associated fungi. Four species of scolytine beetles were collected from various Virgilia hosts and from across the CFR. All were consistently associated with various Geosmithia species, fungi known from phloeophagous beetles in many parts of the world, but not yet reported as Scolytinae associates in South Africa. Four beetle species, a single mite species and five Geosmithia species were recovered. The beetles, Hapalogenius fuscipennis, Cryphalini sp. 1, and Scolytoplatypus fasciatus were associated with a single species of Elattoma phoretic mite that commonly carried spores of Geosmithia species. Liparthrum sp. 1 did not carry phoretic mites. Similar to European studies, Geosmithia associates of beetles from Virgilia were constant over extended geographic ranges, and species that share the same host plant individual had similar Geosmithia communities. Phoretic mites were unable to feed on their Geosmithia associates, but were observed to feed on bark beetle larvae within tunnels. This study forms the first African-centred base for ongoing global studies on the associations between arthropods and Geosmithia species. It strengthens hypotheses that the association between Scolytinae beetles and dry-spored Geosmithia species may be more ubiquitous than commonly recognised.  相似文献   

14.
Protea-associated Knoxdaviesia species grow on decaying inflorescences, yet are closely related to plant pathogens such as Ceratocystis albifundus. C. albifundus also infects Protea, but occupies a distinct niche. We investigated substrate utilization in two Knoxdaviesia saprotrophs, a generalist and a specialist, and the pathogen C. albifundus by integrating phenome and whole-genome data. On shared substrates, the generalist grew slightly better than its specialist counterpart, alluding to how it has maintained its Protea host range. C. albifundus grew on few substrates and had limited cell wall-degrading enzymes. It did not utilize sucrose, but may prefer soluble oligosaccharides. Nectar monosaccharides are likely important carbon sources for early colonizing Knoxdaviesia species. Once the inflorescence ages, they could switch to degrading cell wall components. C. albifundus likely uses its limited cell wall-degrading arsenal to gain access to plant cells and exploit internal resources. Overall, carbon metabolism and gene content in three related fungi reflected their ecological adaptations.  相似文献   

15.
16.
《Fungal Ecology》2008,1(1):24-32
Nutrient assimilation by two mycotoxigenic spoilage fungi (Penicillium verrucosum, Aspergillus ochraceus) and four other food spoilage fungi (Penicillium coryolophilum, P. roqueforti, Cladosporium herbarum, Eurotium repens), of 32 key C-sources in wheat bread were examined in relation to abiotic factors of water availability, pH, temperature and the presence/absence of a preservative, potassium sorbate. These studies were to understand the relative potential co-existence, nutritional partitioning and niche exclusion in bread-based matrices. The niche size decreased significantly with decrease in water availability, temperature and pH. There were also significant interactive effects between pH and the preservative. The data were used to determine the niche overlap indices (NOI) of competing fungi relative to the two ochratoxigenic species. These showed that P. verrucosum and A. ochraceus were nutritionally dominant over the other species. The NOIs showed that potential co-existence and/or niche exclusion was influenced by environmental factors. Overall, the addition of the preservative increased the interspecific competition for nutrients. The level of co-existence and nutritional partitioning was significantly modified by abiotic factors, and this can help explain the dominance of specific fungal species in food matrices. This approach could also be useful for understanding competitiveness and dominance of fungal species in other ecosystems, especially in relation to impacts of abiotic and biotic factors.  相似文献   

17.
White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST). The interactions between GSTs from two white-rot fungi, Trametes versicolor and Phanerochaete chrysosporium, and an environmental library of wood extracts have been studied. The results demonstrate that the specificity of these interactions is closely related to the chemical composition of the extracts in accordance with the tree species and their localization inside the wood (sapwood vs heartwood vs knotwood). These data suggest that the fungal GSTome could reflect the chemical environment encountered by these fungi during wood degradation and could be a way to study their adaptation to their way of life.  相似文献   

18.
Insect-killing (entomopathogenic) fungi have high potential for controlling agriculturally harmful pests. However, their pathogenicity is slow, and this is one reason for their poor acceptance as a fungal insecticide. The expression of bumblebee, Bombus ignitus, venom serine protease (VSP) by Beauveria bassiana (ERL1170) induced melanization of yellow spotted longicorn beetles (Psacothea hilaris) as an over-reactive immune response, and caused substantially earlier mortality in beet armyworm (Spodopetra exigua) larvae when compared to the wild type. No fungal outgrowth or sporulation was observed on the melanized insects, thus suggesting a self-restriction of the dispersal of the genetically modified fungus in the environment. The research is the first use of a multi-functional bumblebee VSP to significantly increase the speed of fungal pathogenicity, while minimizing the dispersal of the fungal transformant in the environment.  相似文献   

19.
The ophiostomatoid fungi associated with cerambycid beetles Tetropium spp. (their symbiotic vectors) colonizing Norway spruce in Poland (six species collected) were isolated. The virulence of representative isolates was evaluated through inoculations using 2-year-old Norway spruce seedlings. A total of 1325 isolates (Ophiostoma piceae, O. tetropii, O. minus, Grosmannia piceiperda, G. cucullata, and five other less frequent taxa) were obtained. Tetropium castaneum and T. fuscum were vectors of similar spectra of ophiostomatoid fungi although some differences in fungal frequency between these Tetropium spp. were found. Among the fungal associates of the Tetropium spp. collected only G. piceiperda was pathogenic, which suggests that it can play a role in the death of spruce trees following attack by Tetropium spp.  相似文献   

20.
Fungi in the orders Ophiostomatales and Microascales (Ascomycota), often designated as ophiostomatoid fungi, are frequent associates of scolytine bark and ambrosia beetles that colonize hardwood and coniferous trees. Several species, e.g., Ophiostoma novo-ulmi, are economically damaging pathogens of trees. Because little is known regarding the ophiostomatoid fungi in Europe, we have explored the diversity of these fungi associated with hardwood-infesting beetles in Poland. This study aims to clarify the associations between fungi in the genera Ambrosiella, Graphium (Microascales), Graphilbum, Leptographium, Ophiostoma and Sporothrix (Ophiostomatales) and their beetle vectors in hardwood ecosystems. Samples associated with 18 bark and ambrosia beetle species were collected from 11 stands in Poland. Fungi were isolated from adult beetles and galleries. Isolates were identified based on morphology, DNA sequence comparisons for five gene regions (ITS, LSU, ßT, TEF 1-α, and CAL) and phylogenetic analyses. In total, 36 distinct taxa were identified, including 24 known and 12 currently unknown species. Several associations between fungi and bark and ambrosia beetles were recorded for the first time. In addition, associations between Dryocoetes alni, D. villosus, Hylesinus crenatus, Ernoporus tiliae, Pteleobius vittatus and ophiostomatoid fungi were reported for the first time, and Sporothrix eucastanea was reported for the first time outside of the USA. Among the species of Ophiostomatales, 14 species were in Ophiostoma s. l., two species were in Graphilbum, nine species were in Sporothrix, and seven species were in Leptographium s. l. Among the species of Microascales, three species were in Graphium, and one was in Ambrosiella. Twenty taxa were present on the beetles and in the galleries, twelve only on beetles, and four only in galleries. Bark and ambrosia beetles from hardwoods appear to be regular vectors, with ophiostomatoid fungi present in all the beetle species. Most ophiostomatoid species had a distinct level of vector/host specificity, although Ophiostoma quercus, the most frequently encountered species, also had the greatest range of beetle vectors and tree hosts. Plant pathogenic O. novo-ulmi was found mainly in association with elm-infesting bark beetles (Scolytus multistriatus, S. scolytus, and P. vittatus) and occasionally with H. crenatus on Fraxinus excelsior and with Scolytus intricatus on Quercus robur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号