首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The in vitro growth patterns of three nonpathogenic and three pathogenic species of bacteria in tissue of Galleria mellonella were compared to growth curves in broth controls. Over the 12-hour observation period, the nonpathogenic species never attained growth in crushed tissue that was comparable to that of the controls. However, the pathogens grew very similarly in crushed tissue and in broth controls. The results suggest that nonpathogenic species of bacteria are unable to grow in crushed tissue of G. mellonella whereas the tissue appears to be analogous to culture media for the pathogenic species. The possible implications of these results are discussed.  相似文献   

2.
The growth and survival of pathogenic and nonpathogenic Pseudomonas syringae strains and of the nonpathogenic species Pantoea agglomerans, Stenotrophomonas maltophilia, and Methylobacterium organophilum were compared in the phyllosphere of bean. In general, the plant pathogens survived better than the nonpathogens on leaves under environmental stress. The sizes of the total leaf-associated populations of the pathogenic P. syringae strains were greater than the sizes of the total leaf-associated populations of the nonpathogens under dry conditions but not under moist conditions. In these studies the surface sterilants hydrogen peroxide and UV irradiation were used to differentiate cells that were fully exposed on the surface from nonexposed cells that were in “protected sites” that were inaccessible to these agents. In general, the population sizes in protected sites increased with time after inoculation of plants. The proportion of bacteria on leaves that were in protected sites was generally greater for pathogens than for nonpathogens and was greater under dry conditions than under moist conditions. When organisms were vacuum infiltrated into leaves, the sizes of the nonexposed “internal” populations were greater for pathogenic P. syringae strains than for nonpathogenic P. syringae strains. The sizes of the populations of the nonpathogenic species failed to increase or even decreased. The sizes of nonexposed populations following spray inoculation were correlated with the sizes of nonexposed, internal populations which developed after vacuum infiltration and incubation. While the sizes of the populations of the pathogenic P. syringae strains increased on leaves under dry conditions, the sizes of the populations of the nonpathogenic strains of P. syringae, P. agglomerans, and S. maltophilia decreased when the organisms were applied to plants. The sizes of the populations on dry leaves were also correlated with the sizes of the nonexposed populations that developed following vacuum infiltration. Although pathogenicity was not required for growth in the phyllosphere under high-relative-humidity conditions, pathogenicity apparently was involved in the ability to access and/or multiply in certain protected sites in the phyllosphere and in growth on dry leaves.  相似文献   

3.
There have been many attempts to control bacterial wilt with antagonistic bacteria or spontaneous nonpathogenic mutants of Pseudomonas solanacearum that lack the ability to colonize the host, but they have met with limited success. Since a large gene cluster (hrp) is involved in the pathogenicity of P. solanacearum, we developed a biological control strategy using genetically engineered Hrp- mutants of P. solanacearum. Three pathogenic strains collected in Guadeloupe (French West Indies) were rendered nonpathogenic by insertion of an ω-Km interposon within the hrp gene cluster of each strain. The resulting Hrp- mutants were tested for their ability to control bacterial wilt in challenge inoculation experiments conducted either under growth chamber conditions or under greenhouse conditions in Guadeloupe. Compared with the colonization by a pathogenic strain which spread throughout the tomato plant, colonization by the mutants was restricted to the roots and the lower part of the stems. The mutants did not reach the fruit. Moreover, the presence of the mutants did not affect fruit production. When the plants were challenge inoculated with a pathogenic strain, the presence of Hrp- mutants within the plants was correlated with a reduction in disease severity, although pathogenic bacteria colonized the stem tissue at a higher density than the nonpathogenic bacteria. Challenge inoculation experiments conducted under growth chamber conditions led, in some cases, to exclusion of the pathogenic strain from the aerial part of the plant, resulting in high protection rates. Furthermore, there was evidence that one of the pathogenic strains used for the challenge inoculations produced a bacteriocin that inhibited the in vitro growth of the nonpathogenic mutants.  相似文献   

4.
Changes in rhythmic pulsations of hemolymph pressure have been continuously monitored from several hours before injection of the pathogenic bacteria until death of the infected Tenebrio pupae. Lethality induced by five different species of entomopathogenic bacteria was associated with specific changes in the hemolymph pressure pattern. During the initial stages of infection (incubation period) the pupae continued to produce regular and synchronized series of normal pulsations. The pathophysiological symptoms of the acute disease became manifested by successive desynchronisation of the frequency and simultaneous depression of the amplitude of the pulsations. This irreversibly proceeded, with species specific modifications, until death of the pupae when all peaks in hemolymph pressure disappeared. Duration of the incubation period was inversely proportional to the injected dose, while the later period characterized by development of the pathophysiological symptoms had more or less constant course in infection with each bacterial species. Certain toxic enzymes, protease and phospholipase C, had similar action on hemolymph pressure pulses. Application of the tensometric method to pathophysiological studies in insects has been discussed.  相似文献   

5.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

6.
Agrocin-producing pathogenic and nonpathogenic biotype-3 strains ofAgrobacterium tumefaciens were isolated from grapevine gall tissue. In vitro activity of the nonpathogenic agrocin producers was restricted to biotype-3 pathogens used. Pathogenic agrocin producers were active in vitro against biotype-3 agrocin-producing nonpathogens, non-agrocin-producing pathogens, and biotype-1 strains when cultivated on a modified Stonier's medium; on a medium designated AB, two strains stested showed no activity against agrocin-producing nonpathogens, but agrocin of one of these strains was active against other agrocin-producing pathogens. In a greenhouse experiment a marked tendency toward decreased gall formation by biotype-3 pathogens on grapevines was obtained when biotype-3 pathogens and nonpathogenic biotype-3 agrocin producers were applied to wounds simultaneously. In this experiment, agrocin-producting pathogens tended to be more virulent than non-agrocin-producing pathogens.  相似文献   

7.
Because susceptibility of white grub species to entomopathogenic nematodes differs, we compared the virulence of Photorhabdus temperata and Xenorhabdus koppenhoeferi, the symbiotic bacteria of the nematodes Heterorhabditis bacteriophora and Steinernema scarabaei, respectively, to the three white grub species, Popillia japonica, Rhizotrogus majalis, and Cyclocephala borealis. Both bacteria were pathogenic to all three grub species even at 2 cells/grub. However, the median lethal dose at 48 h post injection and median lethal time at 20 cells/grub showed that P. temperata was more virulent than X. koppenhoeferi to C. borealis. Although H. bacteriophora is less pathogenic than S. scarabaei to R. majalis and P. japonica, their symbiotic bacteria did not differ in virulence against these two grub species, and they also showed similar growth patterns both in vitro and inside R. majalis larvae at 20 °C. We then tested the pathogenicity of oral- and intrahemocoel-introduced H. bacteriophora to R. majalis to determine whether nematodes are able to successfully vector the bacteria into the hemolymph. Hemocoel injected H. bacteriophora was pathogenic to R. majalis indicating successful bacterial release, but orally introduced H. bacteriophora were not. Dissection of grubs confirmed that the orally introduced H. bacteriophora were unable to penetrate into the hemolymph through the gut wall. We conclude that the low susceptibility of R. majalis to H. bacteriophora is not due to the symbiotic bacteria but rather to the nematode’s poor ability to penetrate through the gut wall and the cuticle to vector the bacteria into the hemolymph.  相似文献   

8.
Headspace analyses over microbial cultures using multi-capillary column-ion mobility spectrometry (MCC-IMS) could lead to a faster, safe and cost-effective method for the identification of pathogens. Recent studies have shown that MCC-IMS allows identification of bacteria and fungi, but no information is available from when on during their growth a differentiation between bacteria is possible. Therefore, we analysed the headspace over human pathogenic reference strains of Escherichia coli and Pseudomonas aeruginosa at four time points during their growth in a complex fluid medium. In order to validate our findings and to answer the question if the results of one bacterial strain can be transferred to other strains of the same species, we also analysed the headspace over cultures from isolates of random clinical origin. We detected 19 different volatile organic compounds (VOCs) that appeared or changed their signal intensity during bacterial growth. These included six VOCs exclusively changing over E. coli cultures and seven exclusively changing over P. aeruginosa cultures. Most changes occurred in the late logarithmic or static growth phases. We did not find differences in timing or trends in signal intensity between VOC patterns of different strains of one species. Our results show that differentiation of human pathogenic bacteria by headspace analyses using MCC-IMS technology is best possible during the late phases of bacterial growth. Our findings also show that VOC patterns of a bacterial strain can be transferred to other strains of the same species.  相似文献   

9.
There have been many attempts to control bacterial wilt with antagonistic bacteria or spontaneous nonpathogenic mutants of Pseudomonas solanacearum that lack the ability to colonize the host, but they have met with limited success. Since a large gene cluster (hrp) is involved in the pathogenicity of P. solanacearum, we developed a biological control strategy using genetically engineered Hrp mutants of P. solanacearum. Three pathogenic strains collected in Guadeloupe (French West Indies) were rendered nonpathogenic by insertion of an omega-Km interposon within the hrp gene cluster of each strain. The resulting Hrp mutants were tested for their ability to control bacterial wilt in challenge inoculation experiments conducted either under growth chamber conditions or under greenhouse conditions in Guadeloupe. Compared with the colonization by a pathogenic strain which spread throughout the tomato plant, colonization by the mutants was restricted to the roots and the lower part of the stems. The mutants did not reach the fruit. Moreover, the presence of the mutants did not affect fruit production. When the plants were challenge inoculated with a pathogenic strain, the presence of Hrp mutants within the plants was correlated with a reduction in disease severity, although pathogenic bacteria colonized the stem tissue at a higher density than the nonpathogenic bacteria. Challenge inoculation experiments conducted under growth chamber conditions led, in some cases, to exclusion of the pathogenic strain from the aerial part of the plant, resulting in high protection rates. Furthermore, there was evidence that one of the pathogenic strains used for the challenge inoculations produced a bacteriocin that inhibited the in vitro growth of the nonpathogenic mutants.  相似文献   

10.
Most bacteria pathogenic for humans have closely related nonpathogenic counterparts that live as saprophytes, commensals or even symbionts (mutualists) in similar or different habitats. The knowledge of how these bacteria adapt their metabolism to the preferred habitats is critical for our understanding of pathogenesis, commensalism and symbiosis, and - in the case of bacterial pathogens - could help to identify targets for new antimicrobial agents. The focus of this review is on the metabolic potentials and adaptations of three different groups of human extra- and intracellular bacterial pathogens and their nonpathogenic relatives. All bacteria selected have the potential to reach the interior of mammalian host cells. However, their ability to replicate intracellularly differs significantly. The question therefore arises whether there are specific metabolic requirements that support stable intracellular replication. Furthermore, we discuss - whenever relevant data for the pathogenic representatives are available - the possible effect of the metabolism on the expression of virulence genes.  相似文献   

11.
Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10.  相似文献   

12.
We have explored antimicrobial compounds in oyster hemolymph and purified four active peptides with molecular masses of 4464, 3158, 655 and 636 Da. While no exploitable structural elements were obtained for the former three, a partial amino acid sequence (X-P-P-X-X-I-V) was obtained for the latter, named Cg-636. Due to both its low MM and the presence of exotic amino acid residue (X), we suspected a bacterial origin and tracked cultivable hemolymph-resident bacteria of oyster for their antimicrobial abilities. Supernatants of 224 hemolymph resident bacteria coming from 60 oysters were screened against 10 target bacteria including aquaculture pathogens. Around 2% (5 strains) revealed antimicrobial activities. They belong to Pseudoalteromonas and Vibrio genera. Two closely related strains named hCg-6 and hCg-42 have been shown to produce Bacteriocin-Like Inhibitory Substances (BLIS) even in oyster hemolymph. We report herein first BLIS-producing bacteria isolated from bivalve hemolymph. These results strongly suggest that hemolymph resident bacteria may prevent pathogen establishment and pave the way for considering a role of resident bacteria into bivalve defense.  相似文献   

13.
14.
The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs) detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS), induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-κB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria.  相似文献   

15.
Bacterial infections are the most important problem of health care worldwide. The hemolymph antibacterial proteins of Mesocyclops leuckarti was isolated for the first time and its antibacterial efficacy was evaluated against four different human pathogenic microbes viz., Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia and Shigella flexneri. The antibacterial potential of the antimicrobial proteins of hemolymph samples from plankton cultured in water enriched with Cow Urine Distillate (CUD) was compared with normal ones. The results indicated that the hemolymph proteins were more potential against Gram negative bacteria than Gram positive bacteria. Klebsiella pneumonia was more susceptible to the hemolymph proteins exhibiting a zone of inhibition measuring 27 mm. The supplement of CUD to the culture media further enriched the antibacterial activity of the hemolymph proteins (29 mm). The SDS-PAGE analysis indicated two different types of clear bands representing proteins of 53 kDa and 19 kDa. Overall, this investigation signified that the microcrustaceans have a defence mechanism hemolymph of Mesocyclops leuckarti have a potential agent for novel antibiotics.  相似文献   

16.
A diverse array of bacterial species, including several potential human pathogens, was isolated from edible crabs collected in cold waters. Crabs collected near Kodiak Island, Alaska, contained higher levels of bacteria than crabs collected away from regions of human habitation. The bacteria associated with the crabs collected near Kodiak included Yersinia enterocolitica, Klebsiella pneumoniae, and coagulase-negative Staphylococcus species; the pathogenicity of these isolates was demonstrated in mice. Although coliforms were not found, the bacterial species associated with the tissues of crabs collected near Kodiak indicate possible fecal contamination that may have occurred through contact with sewage. Compared with surrounding waters and sediments, the crab tissues contained much higher proportions of gram-positive cocci. As revealed by indirect plate counts and direct scanning electron microscopic observations, muscle and hemolymph tissues contained much lower levels of bacteria than shell and gill tissues. After the death of a crab, however, the numbers of bacteria associated with hemolymph and muscle tissues increased significantly. Microcosm studies showed that certain bacterial populations, e.g., Vibrio cholerae, can be bioaccumulated in crab gill tissues. The results of this study indicate the need for careful review of waste disposal practices where edible crabs may be contaminated with microorganisms that are potential human pathogens and the need for surveillance of shellfish for pathogenic microorganisms that naturally occur in marine ecosystems.  相似文献   

17.
18.
Suppression of soilborne diseases by biocontrol agents involves complex interactions among biocontrol agents and the pathogen and between these microorganisms and the plant. In general, these interactions are not well characterized. In this work, we studied (i) the diversity among strains of fluorescent Pseudomonas spp., Bacillus spp., and Paenibacillus sp. for their sensitivity to fusaric acid (FAc) and phytoanticipins from different host plants, (ii) the diversity of pathogenic and nonpathogenic Fusarium oxysporum isolates for their sensitivity to phytoanticipins, and (iii) the influence of FAc on the production of pyoverdine by fluorescent Pseudomonas spp. tolerant to this compound. There was a great diversity in the response of the bacterial strains to FAc; however, as a group, Bacillus spp. and Paenibacillus macerans were much more sensitive to FAc than Pseudomonas spp. FAc also affected production of pyoverdine by FAc-tolerant Pseudomonas spp. strains. Phytoanticipins differed in their effects on microbial growth, and sensitivity to a phytoanticipin varied among bacterial and fungal strains. Biochanin A did not affect growth of bacteria, but coumarin inhibited growth of Pseudomonas spp. strains and had no effect on Bacillus circulans and P. macerans. Conversely, tomatine inhibited growth of B. circulans and P. macerans. Biochanin A and tomatine inhibited growth of three pathogenic isolates of F. oxysporum but increased growth of three nonpathogenic F. oxysporum isolates. Coumarin inhibited growth of all pathogenic and nonpathogenic F. oxysporum isolates. These results are indicative of the complex interactions that can occur among plants, pathogens, and biological control agents in the rhizosphere and on the root surface. Also, these results may help to explain the low efficacy of some combinations of biocontrol agents, as well as the inconsistency in achieving disease suppression under field conditions.  相似文献   

19.

Background

Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.

Results

Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.

Conclusion

The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.  相似文献   

20.
More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号